On geometric ergodicity and prediction in nonnegative non-linear autoregressive processes
Kybernetika (2004)
- Volume: 40, Issue: 6, page [691]-702
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topReferences
top- Anděl J., 10.1111/j.1467-9892.1989.tb00011.x, J. Time Ser. Anal. 10 (1989), 1–11 (1989) DOI10.1111/j.1467-9892.1989.tb00011.x
- Anděl J., 10.1007/BF02564427, Test 6 (1997), 91–100 (1997) MR1466434DOI10.1007/BF02564427
- Anděl J., Dupač V., Extrapolations in non-linear autoregressive processes, Kybernetika 35 (1999), 383–389 (1999) MR1704673
- Bhansali R. J., Effects of not knowing the order of an autoregressive process on the mean squared error of prediction – I, J. Amer. Statist. Assoc. 76 (1981), 588–597 (1981) Zbl0472.62093MR0629746
- Bhattacharya R., Lee, Ch., 10.1016/0167-7152(94)00082-J, Statist. Probab. Lett. 22 (1995), 311–315 (1995) MR1333189DOI10.1016/0167-7152(94)00082-J
- Cline D. B. H., Pu H., 10.1016/S0167-7152(98)00081-9, Statist. Probab. Lett. 40 (1998), 139–148 (1998) MR1650873DOI10.1016/S0167-7152(98)00081-9
- Datta S., Mathew, G., McCormick W. P., 10.1111/1467-842X.00026, Austral. & New Zealand J. Statist. 40 (1998), 229–239 (1998) Zbl0923.62092MR1631108DOI10.1111/1467-842X.00026
- Fuller W. A., Hasza D. P., 10.1016/0304-4076(80)90012-3, J. Econometrics 13 (1980), 139–157 (1980) Zbl0521.62078MR0575084DOI10.1016/0304-4076(80)90012-3
- Lee O., 10.1016/S0167-7152(99)00096-6, Statist. Probab. Lett. 46 (2000), 121–131 MR1748866DOI10.1016/S0167-7152(99)00096-6
- Moeanaddin R., Tong H., 10.1111/j.1467-9892.1990.tb00040.x, J. Time Ser. Anal. 11 (1990), 33–48 (1990) MR1046979DOI10.1111/j.1467-9892.1990.tb00040.x
- Tjøstheim D., 10.2307/1427459, Adv. in Appl. Probab. 22 (1990), 587–611 (1990) DOI10.2307/1427459
- Tong H., Non-linear Time Series, Clarendon Press, Oxford 1990 Zbl0835.62076