An exploratory canonical analysis approach for multinomial populations based on the -divergence measure
Julio A. Pardo; Leandro Pardo; María Del Carmen Pardo; K. Zografos
Kybernetika (2004)
- Volume: 40, Issue: 6, page [757]-776
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topPardo, Julio A., et al. "An exploratory canonical analysis approach for multinomial populations based on the $\phi $-divergence measure." Kybernetika 40.6 (2004): [757]-776. <http://eudml.org/doc/33734>.
@article{Pardo2004,
abstract = {In this paper we consider an exploratory canonical analysis approach for multinomial population based on the $\phi $-divergence measure. We define the restricted minimum $\phi $-divergence estimator, which is seen to be a generalization of the restricted maximum likelihood estimator. This estimator is then used in $\phi $-divergence goodness-of-fit statistics which is the basis of two new families of statistics for solving the problem of selecting the number of significant correlations as well as the appropriateness of the model.},
author = {Pardo, Julio A., Pardo, Leandro, Pardo, María Del Carmen, Zografos, K.},
journal = {Kybernetika},
keywords = {canonical analysis; restricted minimum $\phi $-divergence estimator; minimum $\phi $-divergence statistic; simulation; power divergence; restricted minimum -divergence estimator; minimum -divergence statistic; simulations},
language = {eng},
number = {6},
pages = {[757]-776},
publisher = {Institute of Information Theory and Automation AS CR},
title = {An exploratory canonical analysis approach for multinomial populations based on the $\phi $-divergence measure},
url = {http://eudml.org/doc/33734},
volume = {40},
year = {2004},
}
TY - JOUR
AU - Pardo, Julio A.
AU - Pardo, Leandro
AU - Pardo, María Del Carmen
AU - Zografos, K.
TI - An exploratory canonical analysis approach for multinomial populations based on the $\phi $-divergence measure
JO - Kybernetika
PY - 2004
PB - Institute of Information Theory and Automation AS CR
VL - 40
IS - 6
SP - [757]
EP - 776
AB - In this paper we consider an exploratory canonical analysis approach for multinomial population based on the $\phi $-divergence measure. We define the restricted minimum $\phi $-divergence estimator, which is seen to be a generalization of the restricted maximum likelihood estimator. This estimator is then used in $\phi $-divergence goodness-of-fit statistics which is the basis of two new families of statistics for solving the problem of selecting the number of significant correlations as well as the appropriateness of the model.
LA - eng
KW - canonical analysis; restricted minimum $\phi $-divergence estimator; minimum $\phi $-divergence statistic; simulation; power divergence; restricted minimum -divergence estimator; minimum -divergence statistic; simulations
UR - http://eudml.org/doc/33734
ER -
References
top- Aitchison J., Silvey S. D., 10.1214/aoms/1177706538, Ann. Math. Statist. 29 (1958), 813–828 (1958) MR0094873DOI10.1214/aoms/1177706538
- Ali S. M., Silvey S. D., A general class of coefficients of divergence of one distribution from another, J. Roy. Statist. Soc. Ser. B 26 (1966), 131–142 (1966) Zbl0203.19902MR0196777
- Anderson E. B. A., The Statistical Analysis of Categorical Data, Springer-Verlag, Berlin 1990
- Basu A., Basu S., [unknown], Penalized minimum disparity methods in multinomials models. Statistica Sinica 8 (1998), 841–860 (1998) Zbl1229.81348MR1651512
- Basu A., Lindsay B. G., 10.1007/BF00773476, Ann. Inst. Statist. Math. 46 (1994), 683–705 (1994) Zbl0821.62018MR1325990DOI10.1007/BF00773476
- Basu A., Sarkar S., 10.1016/0167-7152(94)90236-4, Statist. Probab. Lett. 20 (1994), 69–73 (1994) MR1294806DOI10.1016/0167-7152(94)90236-4
- Basu A., Sarkar S., 10.1080/00949659408811609, J. Statist. Comput. Simul. 50 (1994), 173–185 (1994) DOI10.1080/00949659408811609
- Benzecri J. P., L’Analyse des Données, Tome 2: L’Analyse des Correspondances. Dunod, Paris 1973 Zbl0632.62002
- Birch M. W., 10.1214/aoms/1177703581, Ann. Math. Statist. 35 (1964), 817–824 (1964) Zbl0259.62017MR0169324DOI10.1214/aoms/1177703581
- Cressie N. A. C., Pardo L., Minimum -divergence estimator and hierarchical testing in loglinear models, Statistica Sinica 10 (2000), 867–884 Zbl0969.62047MR1787783
- Cressie N. A. C., Pardo L., 10.1016/S0378-3758(01)00236-1, J. Statist. Plann. Inference 103 (2002), 437–453 Zbl0988.62041MR1897005DOI10.1016/S0378-3758(01)00236-1
- Cressie N. A. C., Read T. R. C., Multinomial goodness-of-fit tests, J. Roy. Statist. Soc. Ser. B 46 (1984), 440–464 (1984) Zbl0571.62017MR0790631
- Crichton N. J., Hinde J. P., 10.1002/sim.4780081107, Statistics in Medicine 8 (1989), 1351–1362 (1989) DOI10.1002/sim.4780081107
- Csiszár I., Eine Informationstheoretische Ungleichung und ihre Anwendung auf den Beweis der Ergodizität on Markhoffschen Ketten, Publ. Math. Inst. Hungar. Acad. Sci. Ser. A 8 (1963), 85–108 (1963) MR0164374
- Dahdouh B., Durantan J. F., Lecoq M., Analyse des donnée sur l’ecologie des acridients d’Afrique de lóuest, Cahiers de l’ Analyse des Données 3 (1978), 459–482 (1978)
- Fasham M. J. R., 10.2307/1939004, Ecology 58 (1977), 551–561 (1977) DOI10.2307/1939004
- Gilula Z., Haberman J., 10.1080/01621459.1986.10478335, J. Amer. Statist. Assoc. 81 (1986), 395, 780–788 (1986) Zbl0623.62047MR0860512DOI10.1080/01621459.1986.10478335
- Greenacre M. J., Theory and Applications of Correspondence Analysis, Academic Press, New York 1984 Zbl0555.62005MR0767260
- Greenacre M., 10.1177/096228029200100106, Statist. Meth. Medic. Res. 1 (1992), 97–117 (1992) DOI10.1177/096228029200100106
- Greenacre M. J., Correspondence Analysis in Practice, Academic Press, London 1993 Zbl1198.62061
- Greenacre M. J., Correspondence Analysis of the Spanish National Health Survey, Department of Economics and Business, Universitat Pompeu Fabra, Barcelona 2002
- Lancaster H. O., The Chi-squared Distribution, Wiley, New York 1969 Zbl0193.17802MR0253452
- Lebart L., Morineau, A., Warwick K., Multivariate Descriptive Statistical Analysis, Wiley, New York 1984 Zbl0658.62069MR0744990
- Lindsay B. G., 10.1214/aos/1176325512, The case for minimum Hellinger distance and other methods. Ann. Statist. 22 (1994), 1081–1114 (1994) Zbl0807.62030MR1292557DOI10.1214/aos/1176325512
- Matthews G. B., Crowther N. A. S., A maximum likelihood estimation procedure when modelling categorical data in terms of cross-product ratios, South African Statist. J. 31 (1997), 161–184 (1997) Zbl0901.62075MR1614469
- Matthews G. B., Crowther N. A. S., A maximum likelihood estimation procedures when modeling in terms of constraints, South African Statist. J. 29 (1995), 29–50 (1995) MR1369086
- Morales D., Pardo, L., Vajda I., 10.1016/0378-3758(95)00013-Y, J. Statist. Plann. Inference 48 (1995), 347–369 (1995) Zbl0839.62004MR1368984DOI10.1016/0378-3758(95)00013-Y
- Parr W. C., 10.1080/03610928108828104, Comm. Statist. Theory Methods 10 (1981), 1205–1224 (1981) Zbl0458.62035MR0623527DOI10.1080/03610928108828104
- Pardo J. A., Pardo, L., Zografos K., 10.1016/S0378-3758(01)00113-6, J. Statist. Plann. Inference 104 (2002), 221–237 Zbl0988.62014MR1900527DOI10.1016/S0378-3758(01)00113-6
- Read T. R. C., Cressie N. A. C., Goodness-of-fit Statistics for Discrete Multivariate Data, Springer, New York 1988 Zbl0663.62065MR0955054
- Srole L., Langner T. S., Michael S. T., Opler M. K., Reannie T. A. C., Mental Health in the Metropolis: The Midtown Manhattan Study, McGraw-Hill, New York 1962
- Wolfowitz J., 10.1007/BF02949797, Ann. Inst. Statist. Math. 5 (1953), 9–23 (1953) MR0058931DOI10.1007/BF02949797
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.