Fast evaluation of thin-plate splines on fine square grids

Petr Luner; Jan Flusser

Kybernetika (2005)

  • Volume: 41, Issue: 1, page [97]-112
  • ISSN: 0023-5954

Abstract

top
The paper deals with effective calculation of Thin-Plate Splines (TPS). We present a new modification of hierarchical approximation scheme. Unlike 2-D schemes published earlier, we propose an 1-D approximation. The new method yields lower computing complexity while it preserves the approximation accuracy.

How to cite

top

Luner, Petr, and Flusser, Jan. "Fast evaluation of thin-plate splines on fine square grids." Kybernetika 41.1 (2005): [97]-112. <http://eudml.org/doc/33742>.

@article{Luner2005,
abstract = {The paper deals with effective calculation of Thin-Plate Splines (TPS). We present a new modification of hierarchical approximation scheme. Unlike 2-D schemes published earlier, we propose an 1-D approximation. The new method yields lower computing complexity while it preserves the approximation accuracy.},
author = {Luner, Petr, Flusser, Jan},
journal = {Kybernetika},
keywords = {Thin-Plate Spline; fast evaluation; subtabulation; thin-plate spline; fast evaluation; subtabulation},
language = {eng},
number = {1},
pages = {[97]-112},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Fast evaluation of thin-plate splines on fine square grids},
url = {http://eudml.org/doc/33742},
volume = {41},
year = {2005},
}

TY - JOUR
AU - Luner, Petr
AU - Flusser, Jan
TI - Fast evaluation of thin-plate splines on fine square grids
JO - Kybernetika
PY - 2005
PB - Institute of Information Theory and Automation AS CR
VL - 41
IS - 1
SP - [97]
EP - 112
AB - The paper deals with effective calculation of Thin-Plate Splines (TPS). We present a new modification of hierarchical approximation scheme. Unlike 2-D schemes published earlier, we propose an 1-D approximation. The new method yields lower computing complexity while it preserves the approximation accuracy.
LA - eng
KW - Thin-Plate Spline; fast evaluation; subtabulation; thin-plate spline; fast evaluation; subtabulation
UR - http://eudml.org/doc/33742
ER -

References

top
  1. Arad N., Dyn N., Reisfeld, D., Yeshurun Y., Image warping by radial basis functions: Application to facial expressions, CVGIP: Graphical Models and Image Processing 56 (1994), 161–172 (1994) 
  2. Arad N., Gotsman C., 10.1109/83.777087, IEEE Trans. Image Processing 8 (1999), 1063–1074 (1999) DOI10.1109/83.777087
  3. Beatson R. K., Newsam G. N., 10.1016/0898-1221(92)90167-G, Comput. Math. Appl. 24 (1992), 7–19 (1992) Zbl0765.65021MR1190302DOI10.1016/0898-1221(92)90167-G
  4. Berman M., 10.1109/34.291451, IEEE Trans. Pattern Anal. Mach. Intell. 16 (1994), 460–468 (1994) DOI10.1109/34.291451
  5. Bookstein F. L., 10.1109/34.24792, IEEE Trans. Pattern Anal. Mach. Intell. 11 (1989), 567–585 (1989) Zbl0691.65002DOI10.1109/34.24792
  6. Carr J. C., Fright W. R., Beatson R., 10.1109/42.552059, IEEE Trans. Medical Imaging 16 (1997), 96–107 (1997) DOI10.1109/42.552059
  7. Duchon J., Interpolation des fonctions de deux variables suivant le principle de la flexion des plaques minces, RAIRO Anal. Num. 10 (1976), 5–12 (1976) MR0470565
  8. Flusser J., 10.1016/0031-3203(92)90005-4, Pattern Recognition 25 (1992), 45–54 (1992) DOI10.1016/0031-3203(92)90005-4
  9. Goshtasby A., 10.1109/36.3000, IEEE Trans. Geoscience and Remote Sensing 26 (1988), 60–64 (1988) DOI10.1109/36.3000
  10. Greengard L., Rokhlin V., 10.1016/0021-9991(87)90140-9, J. Comput. Phys. 73 (1987), 325–348 (1987) Zbl0629.65005MR0918448DOI10.1016/0021-9991(87)90140-9
  11. Grimson W. E. L., 10.1098/rstb.1982.0088, Philos. Trans. Roy. Soc. London Ser. B 298 (1982), 395–427 (1982) DOI10.1098/rstb.1982.0088
  12. Harder R. L., Desmarais R. N., 10.2514/3.44330, J. Aircraft 9 (1972), 189–191 (1972) DOI10.2514/3.44330
  13. Kašpar R., Zitová B., 10.1016/S0031-3203(03)00133-X, Pattern Recognition 36 (2003), 3027–3030 Zbl1059.68150DOI10.1016/S0031-3203(03)00133-X
  14. Powell M. J. D., Tabulation of thin plate splines on a very fine two-dimensional grid, In: Numerical Methods of Approximation Theory, Volume 9 (D. Braess and L. L. Schumacher, eds.), Birkhäuser Verlag, Basel, 1992, pp. 221–244 (1992) Zbl0813.65014MR1269364
  15. Powell M. J. D., Tabulation of Thin Plate Splines on a Very Fine Two-Dimensional Grid, Numerical Analysis Report of University of Cambridge, DAMTP/1992/NA2, Cambridge 1992 (1992) Zbl0813.65014MR1269364
  16. Rohr K., Stiehl H. S., Buzug T. M., Weese, J., Kuhn M. H., 10.1109/42.929618, IEEE Trans. Medical Imaging 20 (2001), 526–534 DOI10.1109/42.929618
  17. Wahba G., Spline Models for Observational Data, SIAM, Philadelphia 1990 Zbl0813.62001MR1045442
  18. Wolberg G., Digital Image Warping, IEEE Computer Society Press, 1990 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.