Interpretability of linguistic variables: a formal account

Ulrich Bodenhofer; Peter Bauer

Kybernetika (2005)

  • Volume: 41, Issue: 2, page [227]-248
  • ISSN: 0023-5954

Abstract

top
This contribution is concerned with the interpretability of fuzzy rule-based systems. While this property is widely considered to be a crucial one in fuzzy rule-based modeling, a more detailed formal investigation of what “interpretability” actually means is not available. So far, interpretability has most often been associated with rather heuristic assumptions about shape and mutual overlapping of fuzzy membership functions. In this paper, we attempt to approach this problem from a more general and formal point of view. First, we clarify what the different aspects of interpretability are in our opinion. Consequently, we propose an axiomatic framework for dealing with the interpretability of linguistic variables (in Zadeh’s original sense) which is underlined by examples and application aspects, such as, fuzzy systems design aid, data-driven learning and tuning, and rule base simplification.

How to cite

top

Bodenhofer, Ulrich, and Bauer, Peter. "Interpretability of linguistic variables: a formal account." Kybernetika 41.2 (2005): [227]-248. <http://eudml.org/doc/33751>.

@article{Bodenhofer2005,
abstract = {This contribution is concerned with the interpretability of fuzzy rule-based systems. While this property is widely considered to be a crucial one in fuzzy rule-based modeling, a more detailed formal investigation of what “interpretability” actually means is not available. So far, interpretability has most often been associated with rather heuristic assumptions about shape and mutual overlapping of fuzzy membership functions. In this paper, we attempt to approach this problem from a more general and formal point of view. First, we clarify what the different aspects of interpretability are in our opinion. Consequently, we propose an axiomatic framework for dealing with the interpretability of linguistic variables (in Zadeh’s original sense) which is underlined by examples and application aspects, such as, fuzzy systems design aid, data-driven learning and tuning, and rule base simplification.},
author = {Bodenhofer, Ulrich, Bauer, Peter},
journal = {Kybernetika},
keywords = {fuzzy modeling; interpretability; linguistic variable; machine learning; fuzzy modeling; interpretability; linguistic variable; machine learning},
language = {eng},
number = {2},
pages = {[227]-248},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Interpretability of linguistic variables: a formal account},
url = {http://eudml.org/doc/33751},
volume = {41},
year = {2005},
}

TY - JOUR
AU - Bodenhofer, Ulrich
AU - Bauer, Peter
TI - Interpretability of linguistic variables: a formal account
JO - Kybernetika
PY - 2005
PB - Institute of Information Theory and Automation AS CR
VL - 41
IS - 2
SP - [227]
EP - 248
AB - This contribution is concerned with the interpretability of fuzzy rule-based systems. While this property is widely considered to be a crucial one in fuzzy rule-based modeling, a more detailed formal investigation of what “interpretability” actually means is not available. So far, interpretability has most often been associated with rather heuristic assumptions about shape and mutual overlapping of fuzzy membership functions. In this paper, we attempt to approach this problem from a more general and formal point of view. First, we clarify what the different aspects of interpretability are in our opinion. Consequently, we propose an axiomatic framework for dealing with the interpretability of linguistic variables (in Zadeh’s original sense) which is underlined by examples and application aspects, such as, fuzzy systems design aid, data-driven learning and tuning, and rule base simplification.
LA - eng
KW - fuzzy modeling; interpretability; linguistic variable; machine learning; fuzzy modeling; interpretability; linguistic variable; machine learning
UR - http://eudml.org/doc/33751
ER -

References

top
  1. Babuška R., Construction of fuzzy systems – interplay between precision and transparency, In: Proc. Europ. Symp. on Intelligent Techniques, Aachen 2000, pp. 445–452 
  2. Bikdash M., 10.1109/91.811237, IEEE Trans. Fuzzy Systems 7 (1999), 686–696 (1999) DOI10.1109/91.811237
  3. Bodenhofer U., The construction of ordering-based modifiers, In: Fuzzy-Neuro Systems ’99 (G. Brewka, R. Der, S. Gottwald and A. Schierwagen, eds.), Leipziger Universitätsverlag 1999, pp. 55–62 (1999) 
  4. Bodenhofer U., A Similarity-Based Generalization of Fuzzy Orderings, (Schriftenreihe der Johannes-Kepler-Universität Linz C26.) Universitätsverlag Rudolf Trauner, Linz 1999 Zbl1113.03333
  5. Bodenhofer U., A general framework for ordering fuzzy sets, In: Technologies for Constructing Intelligent Systems 1: Tasks, (B. Bouchon-Meunier, J. Guitiérrez-Ríoz, L. Magdalena, and R. R. Yager, eds., Studies in Fuzziness and Soft Computing 89), Physica–Verlag, Heidelberg 2002, pp. 213–224 Zbl1009.68150
  6. Bodenhofer U., Bauer P., Towards an axiomatic treatment of “interpretability”, In: Proc. 6th Internat. Conference on Soft Computing, Iizuka 2000, pp. 334–339 
  7. Bodenhofer U., Bauer P., A formal model of interpretability of linguistic variables, In: Interpretability Issues in Fuzzy Modeling (J. Casillas, O. Cordón, F. Herrera and L. Magdalena, eds.), Studies in Fuzziness and Soft Computing 128), Springer, Berlin 2003, pp. 524–545 Zbl1038.93050
  8. Bodenhofer U., Cock, M. De, Kerre E. E., 10.1080/0308107031000135026, Internat. J. General Systems 4 (2003), 343–360 Zbl1110.03048MR2004832DOI10.1080/0308107031000135026
  9. Bodenhofer U., Klement E. P., Genetic optimization of fuzzy classification systems – a case study, In: Computational Intelligence in Theory and Practice (B. Reusch and K.-H. Temme, eds., Advances in Soft Computing), Physica–Verlag, Heidelberg 2001, pp. 183–200 Zbl1002.68148
  10. Casillas J., Cordón O., Herrera, F., Magdalena L., Interpretability improvements to find the balance interpretability-accuracy in fuzzy modeling: an overview, In: Interpretability Issues in Fuzzy Modeling (J. Casillas, O. Cordón, F. Herrera and L. Magdalena, eds., Studies in Fuzziness and Soft Computing 128), Springer–Verlag, Berlin 2003, pp. 3–24 
  11. Casillas J., Cordón O., Herrera, F., (eds.) L. Magdalena, Interpretability Issues in Fuzzy Modeling (Studies in Fuzziness and Soft Computing 128), Springer–Verlag, Berlin 2003 
  12. Cordón O., Herrera F., 10.1109/91.855921, IEEE Trans. Fuzzy Systems 8 (2000), 335–344 DOI10.1109/91.855921
  13. Baets B. De, Analytical solution methods for fuzzy relational equations, In: Fundamentals of Fuzzy Sets (D. Dubois and H. Prade, eds., The Handbooks of Fuzzy Sets 7), Kluwer Academic Publishers, Boston 2000, pp. 291–340 Zbl0970.03044MR1890236
  14. Baets B. De, Mesiar R., 10.1016/S0165-0114(96)00331-4, Fuzzy Sets and Systems 97 (1998), 211–223 (1998) Zbl0930.03070MR1645614DOI10.1016/S0165-0114(96)00331-4
  15. Cock M. De, Bodenhofer, U., Kerre E. E., Modelling linguistic expressions using fuzzy relations, In: Proc. 6th Internat. Conference on Soft Computing, Iizuka 2000, pp. 353–360 
  16. Drobics M., Bodenhofer U., Fuzzy modeling with decision trees, In: Proc. 2002 IEEE Inernat. Conference on Systems, Man and Cybernetics, Hammamet 2002 
  17. Drobics M., Bodenhofer, U., Klement E. P., 10.1016/S0888-613X(02)00080-4, Internat. J. Approx. Reason. 32 (2003), 131–152 Zbl1026.68111DOI10.1016/S0888-613X(02)00080-4
  18. Dubois D., Prade H., 10.1016/0165-0114(96)00066-8, Fuzzy Sets and Systems 84 (1996), 169–185 (1996) Zbl0905.03008MR1416694DOI10.1016/0165-0114(96)00066-8
  19. Dubois D., Prade, H., Ughetto L., 10.1109/91.618276, IEEE Trans. Fuzzy Systems 5 (1997), 398–417 (1997) DOI10.1109/91.618276
  20. Dubois D., Prade, H., Ughetto L., Fuzzy logic, control engineering and artificial intelligence, In: Fuzzy Algorithms for Control (H. B. Verbruggen, H.-J. Zimmermann, and R. Babuška, eds., International Series in Intelligent Technologies), Kluwer Academic Publishers, Boston 1999, pp. 17–57 (1999) MR1796620
  21. Espinosa J., Vandewalle J., 10.1109/91.873582, IEEE Trans. Fuzzy Systems 8 (2000), 591–600 DOI10.1109/91.873582
  22. Fodor J., Roubens M., Fuzzy Preference Modelling and Multicriteria Decision Support, Kluwer Academic Publishers, Dordrecht 1994 Zbl0827.90002
  23. Geyer–Schulz A., Fuzzy Rule-based Expert Systems and Genetic Machine Learning, (Studies in Fuzziness 3.) Physica–Verlag, Heidelberg 1995 Zbl0914.68166
  24. Geyer–Schulz A., The MIT beer distribution game revisited: Genetic machine learning and managerial behavior in a dynamic decision making experiment, In: Genetic Algorithms and Soft Computing (F. Herrera and J. L. Verdegay, eds.), Studies in Fuzziness and Soft Computing 8, Physica–Verlag, Heidelberg 1996, pp. 658–682 (1996) 
  25. Gottwald S., Fuzzy Sets and Fuzzy Logic, Vieweg, Braunschweig 1993 Zbl1088.03024MR1218623
  26. Haslinger J., Bodenhofer, U., Burger M., Data-driven construction of Sugeno controllers: Analytical aspects and new numerical methods, In: Proc. Joint 9th IFSA World Congress and 20th NAFIPS Internat. Conference, Vancouver 2001, pp. 239–244 
  27. Kerre E. E., Mareš, M., Mesiar R., On the orderings of generated fuzzy quantities, In: Proc. 7th Internat. Conference on Information Processing and Management of Uncertainty in Knowledge-based Systems, Paris 1998, pp. 250–253 (1998) 
  28. Klement E. P., Mesiar, R., Pap E., Triangular Norms (Trends in Logic 8), Kluwer Academic Publishers, Dordrecht 2000 MR1790096
  29. Kóczy L. T., Hirota K., 10.1016/0165-0114(93)90473-U, Fuzzy Sets and Systems 59 (1993), 281–293 (1993) MR1258861DOI10.1016/0165-0114(93)90473-U
  30. Kruse R., Gebhardt, J., Klawonn F., Foundations of Fuzzy Systems, Wiley, New York 1994 Zbl0843.68109
  31. Lowen R., Convex fuzzy sets, Fuzzy Sets and Systems 3 (1980), 291–310 (1980) Zbl0439.52001MR0573999
  32. Michalski R. S., Bratko, I., Kubat M., Machine Learning and Data Mining, Wiley, Chichester 1998 
  33. Muggleton S., Raedt L. De, Inductive logic programming: Theory and methods, J. Logic Program. 19/20 (1994), 629–680 (1994) Zbl0816.68043MR1279936
  34. Pedrycz W., Sosnowski Z. A., 10.1109/3468.833095, IEEE Trans. Systems Man Cybernet. A 30 (2000), 151–159 DOI10.1109/3468.833095
  35. Quinlan J. R., 10.1007/BF00116251, Mach. Learning 1 (1986), 81–106 (1986) DOI10.1007/BF00116251
  36. Quinlan J. R., 10.1007/BF00117105, Mach. Learning 5 (1990), 239–266 (1990) DOI10.1007/BF00117105
  37. Ralston A., Reilly E. D., (eds.) D. Hemmendinger, Encyclopedia of Computer Science, Fourth edition. Groves Dictionaries, Williston 2000 Zbl0954.68002
  38. Ruspini E. H., 10.1016/S0019-9958(69)90591-9, Inform. and Control 15 (1969), 22–32 (1969) Zbl0192.57101DOI10.1016/S0019-9958(69)90591-9
  39. Setnes M., Babuška, R., Verbruggen H. B., 10.1109/5326.661100, IEEE Trans. Systems Man Cybernet. C 28 (1998), 165–169 (1998) DOI10.1109/5326.661100
  40. Setnes M., Roubos H., 10.1109/91.873575, IEEE Trans. Fuzzy Systems 8 (2000), 509–522 DOI10.1109/91.873575
  41. Yen J., Wang, L., Gillespie C. W., 10.1109/91.728447, IEEE Trans. Fuzzy Systems 6 (1998), 530–537 (1998) DOI10.1109/91.728447
  42. Zadeh L. A., 10.1016/S0019-9958(65)90241-X, Inform. and Control 8 (1965), 338–353 (1965) Zbl0139.24606MR0219427DOI10.1016/S0019-9958(65)90241-X
  43. Zadeh L. A., The concept of a linguistic variable and its application to approximate reasoning I, Inform. Sci. 8 (1975), 199–250 (1975) Zbl0397.68071MR0386369
  44. Zadeh L. A., 10.1016/0020-0255(75)90046-8, Inform. Sci. 8 (1975), 301–357 (1975) Zbl0404.68074MR0386370DOI10.1016/0020-0255(75)90046-8
  45. Zadeh L. A., 10.1016/0020-0255(75)90017-1, Inform. Sci. 9 (1975), 43–80 (1975) Zbl0404.68075MR0386371DOI10.1016/0020-0255(75)90017-1

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.