Comparing the distributions of sums of independent random vectors

Evgueni I. Gordienko

Kybernetika (2005)

  • Volume: 41, Issue: 4, page [519]-529
  • ISSN: 0023-5954

Abstract

top
Let ( X n , n 1 ) , ( X ˜ n , n 1 ) be two sequences of i.i.d. random vectors with values in k and S n = X 1 + + X n , S ˜ n = X ˜ 1 + + X ˜ n , n 1 . Assuming that E X 1 = E X ˜ 1 , E | X 1 | 2 < , E | X ˜ 1 | k + 2 < and the existence of a density of X ˜ 1 satisfying the certain conditions we prove the following inequalities: v ( S n , S ˜ n ) c max { v ( X 1 , X ˜ 1 ) , ζ 2 ( X 1 , X ˜ 1 ) } , n = 1 , 2 , , where v and ζ 2 are the total variation and Zolotarev’s metrics, respectively.

How to cite

top

Gordienko, Evgueni I.. "Comparing the distributions of sums of independent random vectors." Kybernetika 41.4 (2005): [519]-529. <http://eudml.org/doc/33769>.

@article{Gordienko2005,
abstract = {Let $(X_n, n\ge 1), (\tilde\{X\}_n, n\ge 1)$ be two sequences of i.i.d. random vectors with values in $\{\mathbb \{R\}\}^k$ and $S_n=X_1+\cdots +X_n$, $\tilde\{S\}_n=\tilde\{X\}_1+\cdots +\tilde\{X\}_n$, $n\ge 1$. Assuming that $EX_1=E\tilde\{X\}_1$, $E|X_1|^2<\infty $, $E|\tilde\{X\}_1|^\{k+2\}<\infty $ and the existence of a density of $\tilde\{X\}_1$ satisfying the certain conditions we prove the following inequalities: \[v(S\_n,\tilde\{S\}\_n)\le c\;\max \big \lbrace v(X\_1,\tilde\{X\}\_1), \zeta \_2(X\_1,\tilde\{X\}\_1)\big \rbrace , \quad n=1,2,\dots ,\] where $v$ and $\zeta _2$ are the total variation and Zolotarev’s metrics, respectively.},
author = {Gordienko, Evgueni I.},
journal = {Kybernetika},
keywords = {sum of random vectors; the total variation distance; bound of closeness; Zolotarev’s metric; characteristic function; sum of random vectors; the total variation distance; bound of closeness; Zolotarev's metric; characteristic function},
language = {eng},
number = {4},
pages = {[519]-529},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Comparing the distributions of sums of independent random vectors},
url = {http://eudml.org/doc/33769},
volume = {41},
year = {2005},
}

TY - JOUR
AU - Gordienko, Evgueni I.
TI - Comparing the distributions of sums of independent random vectors
JO - Kybernetika
PY - 2005
PB - Institute of Information Theory and Automation AS CR
VL - 41
IS - 4
SP - [519]
EP - 529
AB - Let $(X_n, n\ge 1), (\tilde{X}_n, n\ge 1)$ be two sequences of i.i.d. random vectors with values in ${\mathbb {R}}^k$ and $S_n=X_1+\cdots +X_n$, $\tilde{S}_n=\tilde{X}_1+\cdots +\tilde{X}_n$, $n\ge 1$. Assuming that $EX_1=E\tilde{X}_1$, $E|X_1|^2<\infty $, $E|\tilde{X}_1|^{k+2}<\infty $ and the existence of a density of $\tilde{X}_1$ satisfying the certain conditions we prove the following inequalities: \[v(S_n,\tilde{S}_n)\le c\;\max \big \lbrace v(X_1,\tilde{X}_1), \zeta _2(X_1,\tilde{X}_1)\big \rbrace , \quad n=1,2,\dots ,\] where $v$ and $\zeta _2$ are the total variation and Zolotarev’s metrics, respectively.
LA - eng
KW - sum of random vectors; the total variation distance; bound of closeness; Zolotarev’s metric; characteristic function; sum of random vectors; the total variation distance; bound of closeness; Zolotarev's metric; characteristic function
UR - http://eudml.org/doc/33769
ER -

References

top
  1. Araujo A., Giné E., The Central Limit Theorem for Real and Banach Valued Random Variables, Wiley, New York 1980 Zbl0457.60001MR0576407
  2. Asmussen S., Applied Probability and Queues, Wiley, Chichester 1987 Zbl1029.60001MR0889893
  3. Bhattacharya R. N., Rao R. Ranga, Normal Approximation and Asymptotic Expansions, Wiley, New York 1976 MR0436272
  4. Dudley R. M., Uniform Central Limit Theorems, Cambridge University Press, Cambridge 1999 Zbl1139.60016MR1720712
  5. Gordienko E. I., 10.1016/S0893-9659(99)00064-6, Appl. Math. Lett. 12 (1999), 103–106 (1999) Zbl0944.60035MR1750146DOI10.1016/S0893-9659(99)00064-6
  6. Gordienko E. I., Chávez J. Ruiz de, New estimates of continuity in M | G I | 1 | queues, Queueing Systems Theory Appl. 29 (1998), 175–188 (1998) MR1654484
  7. Grandell J., Aspects of Risk Theory, Springer–Verlag, Heidelberg 1991 Zbl0717.62100MR1084370
  8. Kalashnikov V., Geometric Sums: Bounds for Rare Events with Applications, Kluwer Academic Publishers, Dordrecht 1997 Zbl0881.60043MR1471479
  9. Kalashnikov V., Konstantinidis D., The ruin probability, Fund. Appl. Math. 2 (1996), 1055–1100 (in Russian) (1996) MR1785772
  10. Prokhorov A. V., Ushakov N. G., 10.1137/S0040585X97979202, Theory Probab. Appl. 46 (2002), 420–430 Zbl1032.60010MR1978662DOI10.1137/S0040585X97979202
  11. Senatov V. V., Uniform estimates of the rate of convergence in the multi-dimensional central limit theorem, Theory Probab. Appl. 25 (1980), 745–759 (1980) 
  12. Senatov V. V., Qualitative effects in estimates for the rate of convergence in the central limit theorem in multidimensional spaces, Proc. Steklov Inst. Math. 215 (1996), 4, 1–237 (1996) MR1632100
  13. Zhukov, Yu. V., On the accuracy of normal approximation for the densities of sums of independent identically distributed random variables, Theory Probab. Appl. 44 (2000), 785–793 Zbl0967.60022MR1811136
  14. Zolotarev V., 10.1111/j.1467-842X.1979.tb01139.x, Austral. J. Statist. 21 (1979), 193–208 (1979) Zbl0428.62012MR0561947DOI10.1111/j.1467-842X.1979.tb01139.x

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.