Comparing the distributions of sums of independent random vectors
Kybernetika (2005)
- Volume: 41, Issue: 4, page [519]-529
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topGordienko, Evgueni I.. "Comparing the distributions of sums of independent random vectors." Kybernetika 41.4 (2005): [519]-529. <http://eudml.org/doc/33769>.
@article{Gordienko2005,
abstract = {Let $(X_n, n\ge 1), (\tilde\{X\}_n, n\ge 1)$ be two sequences of i.i.d. random vectors with values in $\{\mathbb \{R\}\}^k$ and $S_n=X_1+\cdots +X_n$, $\tilde\{S\}_n=\tilde\{X\}_1+\cdots +\tilde\{X\}_n$, $n\ge 1$. Assuming that $EX_1=E\tilde\{X\}_1$, $E|X_1|^2<\infty $, $E|\tilde\{X\}_1|^\{k+2\}<\infty $ and the existence of a density of $\tilde\{X\}_1$ satisfying the certain conditions we prove the following inequalities: \[v(S\_n,\tilde\{S\}\_n)\le c\;\max \big \lbrace v(X\_1,\tilde\{X\}\_1), \zeta \_2(X\_1,\tilde\{X\}\_1)\big \rbrace , \quad n=1,2,\dots ,\]
where $v$ and $\zeta _2$ are the total variation and Zolotarev’s metrics, respectively.},
author = {Gordienko, Evgueni I.},
journal = {Kybernetika},
keywords = {sum of random vectors; the total variation distance; bound of closeness; Zolotarev’s metric; characteristic function; sum of random vectors; the total variation distance; bound of closeness; Zolotarev's metric; characteristic function},
language = {eng},
number = {4},
pages = {[519]-529},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Comparing the distributions of sums of independent random vectors},
url = {http://eudml.org/doc/33769},
volume = {41},
year = {2005},
}
TY - JOUR
AU - Gordienko, Evgueni I.
TI - Comparing the distributions of sums of independent random vectors
JO - Kybernetika
PY - 2005
PB - Institute of Information Theory and Automation AS CR
VL - 41
IS - 4
SP - [519]
EP - 529
AB - Let $(X_n, n\ge 1), (\tilde{X}_n, n\ge 1)$ be two sequences of i.i.d. random vectors with values in ${\mathbb {R}}^k$ and $S_n=X_1+\cdots +X_n$, $\tilde{S}_n=\tilde{X}_1+\cdots +\tilde{X}_n$, $n\ge 1$. Assuming that $EX_1=E\tilde{X}_1$, $E|X_1|^2<\infty $, $E|\tilde{X}_1|^{k+2}<\infty $ and the existence of a density of $\tilde{X}_1$ satisfying the certain conditions we prove the following inequalities: \[v(S_n,\tilde{S}_n)\le c\;\max \big \lbrace v(X_1,\tilde{X}_1), \zeta _2(X_1,\tilde{X}_1)\big \rbrace , \quad n=1,2,\dots ,\]
where $v$ and $\zeta _2$ are the total variation and Zolotarev’s metrics, respectively.
LA - eng
KW - sum of random vectors; the total variation distance; bound of closeness; Zolotarev’s metric; characteristic function; sum of random vectors; the total variation distance; bound of closeness; Zolotarev's metric; characteristic function
UR - http://eudml.org/doc/33769
ER -
References
top- Araujo A., Giné E., The Central Limit Theorem for Real and Banach Valued Random Variables, Wiley, New York 1980 Zbl0457.60001MR0576407
- Asmussen S., Applied Probability and Queues, Wiley, Chichester 1987 Zbl1029.60001MR0889893
- Bhattacharya R. N., Rao R. Ranga, Normal Approximation and Asymptotic Expansions, Wiley, New York 1976 MR0436272
- Dudley R. M., Uniform Central Limit Theorems, Cambridge University Press, Cambridge 1999 Zbl1139.60016MR1720712
- Gordienko E. I., 10.1016/S0893-9659(99)00064-6, Appl. Math. Lett. 12 (1999), 103–106 (1999) Zbl0944.60035MR1750146DOI10.1016/S0893-9659(99)00064-6
- Gordienko E. I., Chávez J. Ruiz de, New estimates of continuity in queues, Queueing Systems Theory Appl. 29 (1998), 175–188 (1998) MR1654484
- Grandell J., Aspects of Risk Theory, Springer–Verlag, Heidelberg 1991 Zbl0717.62100MR1084370
- Kalashnikov V., Geometric Sums: Bounds for Rare Events with Applications, Kluwer Academic Publishers, Dordrecht 1997 Zbl0881.60043MR1471479
- Kalashnikov V., Konstantinidis D., The ruin probability, Fund. Appl. Math. 2 (1996), 1055–1100 (in Russian) (1996) MR1785772
- Prokhorov A. V., Ushakov N. G., 10.1137/S0040585X97979202, Theory Probab. Appl. 46 (2002), 420–430 Zbl1032.60010MR1978662DOI10.1137/S0040585X97979202
- Senatov V. V., Uniform estimates of the rate of convergence in the multi-dimensional central limit theorem, Theory Probab. Appl. 25 (1980), 745–759 (1980)
- Senatov V. V., Qualitative effects in estimates for the rate of convergence in the central limit theorem in multidimensional spaces, Proc. Steklov Inst. Math. 215 (1996), 4, 1–237 (1996) MR1632100
- Zhukov, Yu. V., On the accuracy of normal approximation for the densities of sums of independent identically distributed random variables, Theory Probab. Appl. 44 (2000), 785–793 Zbl0967.60022MR1811136
- Zolotarev V., 10.1111/j.1467-842X.1979.tb01139.x, Austral. J. Statist. 21 (1979), 193–208 (1979) Zbl0428.62012MR0561947DOI10.1111/j.1467-842X.1979.tb01139.x
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.