On the optimal number of classes in the Pearson goodness-of-fit tests
Domingo Morales; Leandro Pardo; Igor Vajda
Kybernetika (2005)
- Volume: 41, Issue: 6, page [677]-698
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topMorales, Domingo, Pardo, Leandro, and Vajda, Igor. "On the optimal number of classes in the Pearson goodness-of-fit tests." Kybernetika 41.6 (2005): [677]-698. <http://eudml.org/doc/33781>.
@article{Morales2005,
abstract = {An asymptotic local power of Pearson chi-squared tests is considered, based on convex mixtures of the null densities with fixed alternative densities when the mixtures tend to the null densities for sample sizes $n\rightarrow \infty .$ This local power is used to compare the tests with fixed partitions $\mathcal \{P\}$ of the observation space of small partition sizes $|\mathcal \{P\}|$ with the tests whose partitions $\mathcal \{P\}=\mathcal \{P\}_\{n\}$ depend on $n$ and the partition sizes $|\mathcal \{P\}_\{n\}|$ tend to infinity for $n\rightarrow \infty $. New conditions are presented under which it is asymptotically optimal to let $|\mathcal \{P\}|$ tend to infinity with $n$ or to keep it fixed, respectively. Similar conditions are presented under which the tests with fixed $|\mathcal \{P\}|$ and those with increasing $|\mathcal \{P\}_\{n\}|$ are asymptotically equivalent.},
author = {Morales, Domingo, Pardo, Leandro, Vajda, Igor},
journal = {Kybernetika},
keywords = {Pearson goodness-of-fit test; Pearson-type goodness-of-fit tests; asymptotic local test power; asymptotic equivalence of tests; optimal number of classes; asymptotic local test power; asymptotic equivalence of tests},
language = {eng},
number = {6},
pages = {[677]-698},
publisher = {Institute of Information Theory and Automation AS CR},
title = {On the optimal number of classes in the Pearson goodness-of-fit tests},
url = {http://eudml.org/doc/33781},
volume = {41},
year = {2005},
}
TY - JOUR
AU - Morales, Domingo
AU - Pardo, Leandro
AU - Vajda, Igor
TI - On the optimal number of classes in the Pearson goodness-of-fit tests
JO - Kybernetika
PY - 2005
PB - Institute of Information Theory and Automation AS CR
VL - 41
IS - 6
SP - [677]
EP - 698
AB - An asymptotic local power of Pearson chi-squared tests is considered, based on convex mixtures of the null densities with fixed alternative densities when the mixtures tend to the null densities for sample sizes $n\rightarrow \infty .$ This local power is used to compare the tests with fixed partitions $\mathcal {P}$ of the observation space of small partition sizes $|\mathcal {P}|$ with the tests whose partitions $\mathcal {P}=\mathcal {P}_{n}$ depend on $n$ and the partition sizes $|\mathcal {P}_{n}|$ tend to infinity for $n\rightarrow \infty $. New conditions are presented under which it is asymptotically optimal to let $|\mathcal {P}|$ tend to infinity with $n$ or to keep it fixed, respectively. Similar conditions are presented under which the tests with fixed $|\mathcal {P}|$ and those with increasing $|\mathcal {P}_{n}|$ are asymptotically equivalent.
LA - eng
KW - Pearson goodness-of-fit test; Pearson-type goodness-of-fit tests; asymptotic local test power; asymptotic equivalence of tests; optimal number of classes; asymptotic local test power; asymptotic equivalence of tests
UR - http://eudml.org/doc/33781
ER -
References
top- Berlinet A., Vajda I., On asymptotic sufficiency and optimality of quantizations, J. Statist. Plann. Inference 135 (2005), to appear Zbl1098.62004MR2323412
- Drost F. C., Kallenberg W. C. M., Moore D. S., Oosterhoff J., 10.1080/01621459.1989.10478748, J. Amer. Statist. Assoc. 89 (1989), 130–141 (1989) Zbl0683.62027MR0999671DOI10.1080/01621459.1989.10478748
- Feller W., An Introduction to Probability and its Applications, Vol, 2. Second edition. Wiley, New York 1966
- Ferguson T. S., Course in Large Sample Theory, Chapman & Hall, London 1996 Zbl0871.62002MR1699953
- Greenwood P. E., Nikulin M. S., A Guide to Chi-Squared Testing, Wiley, New York 1996 Zbl0853.62037MR1379800
- Halmos P., Measure Theory, Academic Press, New York 1964 Zbl0283.28001
- Inglot T., Janic–Wróblewska A., 10.1080/0094965021000060918, J. Statist. Comput. Simul. 73 (2003), 545–561 Zbl1054.62057MR1998668DOI10.1080/0094965021000060918
- Kallenberg W. C. M., Oosterhoff, J., Schriever B. F., 10.1080/01621459.1985.10478211, J. Amer. Statist. Assoc. 80 (1985), 959–968 (1985) Zbl0582.62037MR0819601DOI10.1080/01621459.1985.10478211
- Liese F., Vajda I., Convex Statistical Distances, Teubner Verlag, Leipzig 1987 Zbl0656.62004MR0926905
- Mann H. B., Wald A., 10.1214/aoms/1177731569, Ann. Math. Statist. 13 (1942), 306–317 (1942) MR0007224DOI10.1214/aoms/1177731569
- Mayoral A. M., Morales D., Morales, J., Vajda I., 10.1007/s001840100178, Metrika 57 (2003), 1–27 MR1963708DOI10.1007/s001840100178
- Menéndez M. L., Morales D., Pardo, L., Vajda I., Asymptotic distributions of -divergences of hypotetical and observed frequencies in sparse testing schemes, Statist. Neerlandica 8 (1998), 313–328 (1998)
- Menéndez M. L., Morales D., Pardo, L., Vajda I., Approximations to powers of -disparity goodness of fit tests, Comm. Statist. – Theory Methods 8 (2001), 313–328 Zbl1008.62540MR1862592
- Morris C., 10.1214/aos/1176343006, Ann. Statist. 3 (1975), 165–188 (1975) Zbl0305.62013MR0370871DOI10.1214/aos/1176343006
- Vajda I., 10.1007/BF02018663, Period. Math. Hungar. 2 (1972), 223–234 (1972) Zbl0248.62001MR0335163DOI10.1007/BF02018663
- Vajda I., 10.1109/TIT.2002.800497, IEEE Trans. Inform. Theory 48 (2002), 2163–2172 Zbl1062.94533MR1930280DOI10.1109/TIT.2002.800497
- Vajda I., Asymptotic laws for stochastic disparity statistics, Tatra Mount. Math. Publ. 26 (2003), 269–280 Zbl1154.62334MR2055183
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.