Conditional states and joint distributions on MV-algebras

Martin Kalina; Oľga Nánásiová

Kybernetika (2006)

  • Volume: 42, Issue: 2, page 129-142
  • ISSN: 0023-5954

Abstract

top
In this paper we construct conditional states on semi-simple MV-algebras. We show that these conditional states are not given uniquely. By using them we construct the joint probability distributions and discuss the properties of these distributions. We show that the independence is not symmetric.

How to cite

top

Kalina, Martin, and Nánásiová, Oľga. "Conditional states and joint distributions on MV-algebras." Kybernetika 42.2 (2006): 129-142. <http://eudml.org/doc/33796>.

@article{Kalina2006,
abstract = {In this paper we construct conditional states on semi-simple MV-algebras. We show that these conditional states are not given uniquely. By using them we construct the joint probability distributions and discuss the properties of these distributions. We show that the independence is not symmetric.},
author = {Kalina, Martin, Nánásiová, Oľga},
journal = {Kybernetika},
keywords = {semi-simple MV-algebra; conditional distribution; joint distribution; semi-simple MV-algebra; conditional distribution; joint distribution},
language = {eng},
number = {2},
pages = {129-142},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Conditional states and joint distributions on MV-algebras},
url = {http://eudml.org/doc/33796},
volume = {42},
year = {2006},
}

TY - JOUR
AU - Kalina, Martin
AU - Nánásiová, Oľga
TI - Conditional states and joint distributions on MV-algebras
JO - Kybernetika
PY - 2006
PB - Institute of Information Theory and Automation AS CR
VL - 42
IS - 2
SP - 129
EP - 142
AB - In this paper we construct conditional states on semi-simple MV-algebras. We show that these conditional states are not given uniquely. By using them we construct the joint probability distributions and discuss the properties of these distributions. We show that the independence is not symmetric.
LA - eng
KW - semi-simple MV-algebra; conditional distribution; joint distribution; semi-simple MV-algebra; conditional distribution; joint distribution
UR - http://eudml.org/doc/33796
ER -

References

top
  1. Beltrametti E., Cassinelli G., The logic of quantum mechanics, Addison–Wesley, Reading, Mass. 1981 Zbl0595.03062MR0635780
  2. Chang C. C., 10.1090/S0002-9947-1958-0094302-9, Trans. Amer. Math. Soc. 88 (1958), 467–490 (1958) Zbl0084.00704MR0094302DOI10.1090/S0002-9947-1958-0094302-9
  3. Chang C. C., A new proof of the completeness of the Łukasiewicz axioms, Trans. Amer. Math. Soc. 93 (1959), 74–80 (1959) Zbl0093.01104MR0122718
  4. Chovanec F., States and observables on MV-algebras, Tatra Mountains Math. Publ. 3 (1993), 55–63 (1993) Zbl0799.03074MR1278519
  5. Gudder S. P., An approach to quantum probability, In: Proc. Conf. Foundations of Probability and Physics (A. Khrennikov, ed.), Q. Prob. White Noise Anal. 13 (2001), WSP, Singapure, pp. 147–160 MR2089679
  6. Jurečková M., Riečan B., Weak law of large numbers for weak observables in MV algebras, Tatra Mountains Math. Publ. 12 (1997), 221–228 (1997) Zbl0960.03052MR1607146
  7. Khrennikov A. Yu., 10.1063/1.1570952, J. Math. Phys. 44 (2003), 2471–2478 Zbl1062.81004MR1979096DOI10.1063/1.1570952
  8. Khrennikov A. Yu., 10.1016/j.physleta.2003.07.006, Phys. Lett. A 316 (2003), 279–296 Zbl1031.81012MR2029589DOI10.1016/j.physleta.2003.07.006
  9. Kolmogorov A. N., Grundbegriffe der Wahrscheikchkeitsrechnung, Springer–Verlag, Berlin 1933 
  10. Kolmogorov A. N., The Theory of Probability, In: Mathematics, Its Content, Methods, and Meaning 2 (A. D. Alexandrov, A. N. Kolmogorov, and M. A. Lavrent‘ev, eds.), M.I.T. Press, Cambridge, Mass. 1965 Zbl1073.60003
  11. Montagna F., 10.1023/A:1008322226835, J. Logic. Lang. Inf. 9 (2000), 91–124 Zbl0942.06006MR1749775DOI10.1023/A:1008322226835
  12. Nánásiová O., On conditional probabilities on quantum logic, Internat. J. Theoret. Phys. 25 (1987), 155–162 (1987) 
  13. Nánásiová O., 10.1007/BF00979517, Internat. J. Theoret. Phys. 32 (1993), 1957–1964 (1993) MR1255398DOI10.1007/BF00979517
  14. Nánásiová O., A note on the independent events on a quantum logic, Busefal 76 (1998), 53–57 (1998) 
  15. Nánásiová O., 10.1007/s005000050079, Soft Comp. 4 (2000), 36–40 Zbl1005.03050DOI10.1007/s005000050079
  16. Nánásiová O., 10.1023/A:1027384132753, Internat. J Theoret. Phys. 42 (2003) 1889–1903 Zbl1053.81006MR2023910DOI10.1023/A:1027384132753
  17. Nánásiová O., 10.1023/B:IJTP.0000048818.23615.28, Internat. J. Theoret. Phys. 43 (2004), 7, 1757–1767 Zbl1074.81006MR2108309DOI10.1023/B:IJTP.0000048818.23615.28
  18. Pták P., Pulmannová S., Quantum Logics, Kluwer Acad. Press, Bratislava 1991 Zbl1151.81003MR1176314
  19. Riečan B., On the sum of observables in MV algebras of fuzzy sets, Tatra Mountains Math. Publ. 14 (1998), 225–232 (1998) Zbl0940.03070MR1651215
  20. Riečan B., On the strong law of large numbers for weak observables in MV algebras, Tatra Mountains Math. Publ. 15 (1998), 13–21 (1998) MR1655075
  21. Riečan B., 10.1023/A:1026689912149, Internat. J. Theoret. Phys. 37 (1998), 183–189 (1998) Zbl0908.03058MR1637164DOI10.1023/A:1026689912149
  22. Riečan B., On the product MV algebras, Tatra Mountains Math. Publ. 16 (1999), 143–149 (1999) Zbl0951.06013MR1725292
  23. Riečan B., Mundici D., Probability on MV-Algebras, In: Handbook of Measure Theory (E. Pap, ed.), Elsevier, Amsterdam 2002, pp. 869–909 Zbl1017.28002MR1954631
  24. Riečan B., Neubrunn T., Integral, Measure and Ordering, Kluwer, Dordrecht and Ister Science, Bratislava 1997 Zbl0916.28001MR1489521
  25. Varadarajan V., Geometry of Quantum Theory, D. Van Nostrand, Princeton, New Jersey 1968 Zbl0581.46061MR0471674

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.