-measures, -measures and distinguished classes of fuzzy measures
Peter Struk; Andrea Stupňanová
Kybernetika (2006)
- Volume: 42, Issue: 3, page 367-378
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topStruk, Peter, and Stupňanová, Andrea. "$S$-measures, $T$-measures and distinguished classes of fuzzy measures." Kybernetika 42.3 (2006): 367-378. <http://eudml.org/doc/33811>.
@article{Struk2006,
abstract = {$S$-measures are special fuzzy measures decomposable with respect to some fixed t-conorm $S$. We investigate the relationship of $S$-measures with some distinguished properties of fuzzy measures, such as subadditivity, submodularity, belief, etc. We show, for example, that each $S_P$-measure is a plausibility measure, and that each $S$-measure is submodular whenever $S$ is 1-Lipschitz.},
author = {Struk, Peter, Stupňanová, Andrea},
journal = {Kybernetika},
keywords = {fuzzy measure; t-norm; T-conorm; subadditivity; belief; fuzzy measure; -norm; -conorm; subadditivity; belief},
language = {eng},
number = {3},
pages = {367-378},
publisher = {Institute of Information Theory and Automation AS CR},
title = {$S$-measures, $T$-measures and distinguished classes of fuzzy measures},
url = {http://eudml.org/doc/33811},
volume = {42},
year = {2006},
}
TY - JOUR
AU - Struk, Peter
AU - Stupňanová, Andrea
TI - $S$-measures, $T$-measures and distinguished classes of fuzzy measures
JO - Kybernetika
PY - 2006
PB - Institute of Information Theory and Automation AS CR
VL - 42
IS - 3
SP - 367
EP - 378
AB - $S$-measures are special fuzzy measures decomposable with respect to some fixed t-conorm $S$. We investigate the relationship of $S$-measures with some distinguished properties of fuzzy measures, such as subadditivity, submodularity, belief, etc. We show, for example, that each $S_P$-measure is a plausibility measure, and that each $S$-measure is submodular whenever $S$ is 1-Lipschitz.
LA - eng
KW - fuzzy measure; t-norm; T-conorm; subadditivity; belief; fuzzy measure; -norm; -conorm; subadditivity; belief
UR - http://eudml.org/doc/33811
ER -
References
top- Bronevich A. G., On the closure of families of fuzzy measures under eventwise aggregations, Fuzzy Sets and Systems 153 (2005), 1, 45–70 Zbl1068.28012MR2202123
- Chateauneuf A., 10.1016/0165-4896(95)00794-6, Math. Soc. Sci. 31 (1996), 19–37 (1996) Zbl0921.90001MR1379275DOI10.1016/0165-4896(95)00794-6
- Dubois D., Prade H., Fuzzy Sets and Systems: Theory and Applications, Academic Press, New York 1980 Zbl0444.94049MR0589341
- Klement E. P., Mesiar R., Pap E., Triangular Norms, Kluwer Academic Publishers, Dortrecht 2000 Zbl1087.20041MR1790096
- Klement E. P., Mesiar R., Pap E., 10.1142/S0218488500000514, Internat. J. Uncertain. Fuzziness Knowledge-Based Systems 8 (2000), 701–717 Zbl0991.28014MR1803475DOI10.1142/S0218488500000514
- Klir G. J., Folger T. A., Fuzzy Sets, Uncertainty and Information, Prentice Hall, Englewood Cliffs, New Jersey 1988 Zbl0675.94025MR0930102
- Mesiar R., 10.1016/S0165-0114(98)00216-4, Fuzzy Sets and Systems 102 (1999), 423–428 (1999) Zbl0936.28014MR1676909DOI10.1016/S0165-0114(98)00216-4
- Mesiar R., Triangular norms – an overview, In: Computational Inteligence in Theory and Practice (B. Reusch, K.-H. Temme, eds.), Physica–Verlag, Heidelberg 2001, pp. 35–54 Zbl1002.68164MR1858675
- Nelsen R. B., 10.1007/978-1-4757-3076-0, (Lecture Notes in Statistics 139.), Springer, New York 1999 Zbl1152.62030MR1653203DOI10.1007/978-1-4757-3076-0
- Pap E., Null-additive Set Functions, Kluwer Academic Publishers, Dordrecht 1995 Zbl1003.28012MR1368630
- Pap E., Pseudo-additive measures and their applications, In: Handbook of Measure Theory, Volume II (E. Pap, ed.), Elsevier, North–Holland, Amsterdam 2002, pp. 1403–1465 Zbl1018.28010MR1954645
- Smutná D., On a peculiar t-norm, Busefal 75 (1998), 60–67 (1998)
- Sugeno M., Theory of Fuzzy Integrals and Applications, Ph.D. Thesis, Tokyo Institute of Technology, Tokyo 1974
- Valášková Ĺ., Struk P., Preservation of Distinguished Fuzzy Measure Classes by Distortion, In: MDAI 2004, Barcelona (V. Torra, Y. Narukawa, eds., Lecture Notes in Artificial Intelligence 3131), Springer–Verlag, Berlin 2004, pp. 175–182 Zbl1109.28303
- Wang Z., Klir G. J., Fuzzy Measures Theory, Plenum Press, New York 1992
- Weber S., 10.1016/0022-247X(84)90061-1, J. Math. Anal. Appl. 101 (1984), 114–138 (1984) Zbl0614.28019MR0746230DOI10.1016/0022-247X(84)90061-1
- Zadeh L., 10.1016/0165-0114(78)90029-5, Fuzzy Sets and Systems 1 (1978), 3–28 (1978) MR0480045DOI10.1016/0165-0114(78)90029-5
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.