Inference in conditional probability logic
Niki Pfeifer; Gernot D. Kleiter
Kybernetika (2006)
- Volume: 42, Issue: 4, page 391-404
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topPfeifer, Niki, and Kleiter, Gernot D.. "Inference in conditional probability logic." Kybernetika 42.4 (2006): 391-404. <http://eudml.org/doc/33813>.
@article{Pfeifer2006,
abstract = {An important field of probability logic is the investigation of inference rules that propagate point probabilities or, more generally, interval probabilities from premises to conclusions. Conditional probability logic (CPL) interprets the common sense expressions of the form “if ..., then ...” by conditional probabilities and not by the probability of the material implication. An inference rule is probabilistically informative if the coherent probability interval of its conclusion is not necessarily equal to the unit interval $[0,1]$. Not all logically valid inference rules are probabilistically informative and vice versa. The relationship between logically valid and probabilistically informative inference rules is discussed and illustrated by examples such as the modus ponens or the affirming the consequent. We propose a method to evaluate the strength of CPL inference rules. Finally, an example of a proof is given that is purely based on CPL inference rules.},
author = {Pfeifer, Niki, Kleiter, Gernot D.},
journal = {Kybernetika},
keywords = {probability logic; conditional; modus ponens; system p; probability logic; conditional; modus ponens},
language = {eng},
number = {4},
pages = {391-404},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Inference in conditional probability logic},
url = {http://eudml.org/doc/33813},
volume = {42},
year = {2006},
}
TY - JOUR
AU - Pfeifer, Niki
AU - Kleiter, Gernot D.
TI - Inference in conditional probability logic
JO - Kybernetika
PY - 2006
PB - Institute of Information Theory and Automation AS CR
VL - 42
IS - 4
SP - 391
EP - 404
AB - An important field of probability logic is the investigation of inference rules that propagate point probabilities or, more generally, interval probabilities from premises to conclusions. Conditional probability logic (CPL) interprets the common sense expressions of the form “if ..., then ...” by conditional probabilities and not by the probability of the material implication. An inference rule is probabilistically informative if the coherent probability interval of its conclusion is not necessarily equal to the unit interval $[0,1]$. Not all logically valid inference rules are probabilistically informative and vice versa. The relationship between logically valid and probabilistically informative inference rules is discussed and illustrated by examples such as the modus ponens or the affirming the consequent. We propose a method to evaluate the strength of CPL inference rules. Finally, an example of a proof is given that is purely based on CPL inference rules.
LA - eng
KW - probability logic; conditional; modus ponens; system p; probability logic; conditional; modus ponens
UR - http://eudml.org/doc/33813
ER -
References
top- Adams E. W., The Logic of Conditionals, Reidel, Dordrecht 1975 Zbl0324.02002MR0485189
- Biazzo V., Gilio A., 10.1016/S0888-613X(00)00038-4, Internat. J. Approx. Reason. 24 (2000), 2-3, 251–272 Zbl0995.68124MR1766286DOI10.1016/S0888-613X(00)00038-4
- Biazzo V., Gilio A., Lukasiewicz, T., Sanfilippo G., 10.3166/jancl.12.189-213, J. Appl. Non-Classical Logics 12 (2002), 2, 189–213 Zbl1038.03023MR1949978DOI10.3166/jancl.12.189-213
- Biazzo V., Gilio A., Lukasiewicz, T., Sanfilippo G., 10.1007/s10472-005-9005-y, Ann. Math. Artif. Intell. 45 (2005), 1-2, 35–81 Zbl1083.03027MR2220432DOI10.1007/s10472-005-9005-y
- Calabrese P. G., Goodman I. R., Conditional event algebras and conditional probability logics, In: Proc. Internat. Workshop Probabilistic Methods in Expert Systems (R. Scozzafava, ed.), Societa Italiana di Statistica, Rome 1993, pp. 1–35 (1993)
- Calabrese P. G., Conditional events: Doing for logic and probability what fractions do for integer arithmetic, In: Proc.“The Notion of Event in Probabilistic Epistemology”, Dipartimento di Matematica Applicata “Bruno de Finetti”, Triest 1996, pp. 175–212 (1996)
- Coletti G., 10.1109/21.328932, IEEE Trans. Systems Man Cybernet. 24 (1994), 1747–1754 (1994) MR1302033DOI10.1109/21.328932
- Coletti G., Scozzafava, R., Vantaggi B., Probabilistic reasoning as a general unifying tool, In: ECSQARU 2001 (S. Benferhat and P. Besnard, eds., Lecture Notes in Artificial Intelligence 2143), Springer–Verlag, Berlin 2001, pp. 120–131 Zbl1005.68549
- Coletti G., Scozzafava R., Probabilistic Logic in a Coherent Setting, Kluwer, Dordrecht 2002 Zbl1040.03017MR2042026
- Finetti B. de, Theory of Probability (Vol, 1 and 2). Wiley, Chichester 1974
- Fagin R., Halpern J. Y., Megiddo N., 10.1016/0890-5401(90)90060-U, Inform. and Comput. 87 (1990), 78–128 (1990) Zbl0811.03014MR1055950DOI10.1016/0890-5401(90)90060-U
- Frisch A., Haddawy P., 10.1016/0004-3702(94)90079-5, Artif. Intell. 69 (1994), 93–122 (1994) Zbl0809.03016MR1294875DOI10.1016/0004-3702(94)90079-5
- Gilio A., Probabilistic consistency of conditional probability bounds, In: Advances in Intelligent Computing (B. Bouchon-Meunier, R. R. Yager and L. A. Zadeh, eds., Lecture Notes in Computer Science 945), Springer–Verlag, Berlin 1995
- Gilio A., 10.1023/A:1014422615720, Ann. Math. Artif. Intell. 34 (2002), 5–34 Zbl1014.68165MR1895469DOI10.1023/A:1014422615720
- Hailperin T., Sentential Probability Logic, Origins, Development, Current Status, and Technical Applications. Lehigh University Press, Bethlehem 1996 Zbl0922.03026MR1437603
- Kraus S., Lehmann, D., Magidor M., 10.1016/0004-3702(90)90101-5, Artif. Intell. 44 (1990), 167–207 (1990) Zbl0782.03012MR1072012DOI10.1016/0004-3702(90)90101-5
- Lukasiewicz T., 10.1016/S0888-613X(99)00006-7, Internat. J. Approx. Reason. 21 (1999), 23–61 (1999) Zbl0961.68135MR1693211DOI10.1016/S0888-613X(99)00006-7
- Lukasiewicz T., 10.1016/j.artint.2005.05.005, Artif. Intell. 168 (2005), 119–161 Zbl1132.68737MR2175580DOI10.1016/j.artint.2005.05.005
- Pfeifer N., Kleiter G. D., 10.5334/pb-45-1-71, Psychologica Belgica 45 (2005), 1, 71–99. Updated version at: http://www.users.sbg.ac.at/~pfeifern/ DOI10.5334/pb-45-1-71
- Pfeifer N., Kleiter G. D., Towards a probability logic based on statistical reasoning, In: Proc. 11th Internat. Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, Vol. 3, Editions E. D. K., Paris 2006, pp. 2308–2315
- Sobel J. H., Modus Ponens and Modus Tollens for Conditional Probabilities,, Updating on Uncertain Evidence, Technical Report, University of Toronto 2005. http://www.scar.utoronto.ca/~sobel/
- Wagner C., 10.1093/bjps/55.4.747, British J. Philos. Sci. 55 (2004), 747–753 Zbl1062.03015MR2115533DOI10.1093/bjps/55.4.747
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.