-estimation in nonlinear regression for longitudinal data
Kybernetika (2007)
- Volume: 43, Issue: 1, page 61-74
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topOrsáková, Martina. "$M$-estimation in nonlinear regression for longitudinal data." Kybernetika 43.1 (2007): 61-74. <http://eudml.org/doc/33840>.
@article{Orsáková2007,
abstract = {The longitudinal regression model $Z_i^j=m(\theta _0,\{\mathbb \{X\}\}_i(T_i^j))+ \varepsilon _i^j,$ where $Z_i^j$ is the $j$th measurement of the $i$th subject at random time $T_i^j$, $m$ is the regression function, $\{\mathbb \{X\}\}_i(T_i^j)$ is a predictable covariate process observed at time $T_i^j$ and $\varepsilon _i^j$ is a noise, is studied in marked point process framework. In this paper we introduce the assumptions which guarantee the consistency and asymptotic normality of smooth $M$-estimator of unknown parameter $\theta _0$.},
author = {Orsáková, Martina},
journal = {Kybernetika},
keywords = {$M$-estimation; nonlinear regression; longitudinal data},
language = {eng},
number = {1},
pages = {61-74},
publisher = {Institute of Information Theory and Automation AS CR},
title = {$M$-estimation in nonlinear regression for longitudinal data},
url = {http://eudml.org/doc/33840},
volume = {43},
year = {2007},
}
TY - JOUR
AU - Orsáková, Martina
TI - $M$-estimation in nonlinear regression for longitudinal data
JO - Kybernetika
PY - 2007
PB - Institute of Information Theory and Automation AS CR
VL - 43
IS - 1
SP - 61
EP - 74
AB - The longitudinal regression model $Z_i^j=m(\theta _0,{\mathbb {X}}_i(T_i^j))+ \varepsilon _i^j,$ where $Z_i^j$ is the $j$th measurement of the $i$th subject at random time $T_i^j$, $m$ is the regression function, ${\mathbb {X}}_i(T_i^j)$ is a predictable covariate process observed at time $T_i^j$ and $\varepsilon _i^j$ is a noise, is studied in marked point process framework. In this paper we introduce the assumptions which guarantee the consistency and asymptotic normality of smooth $M$-estimator of unknown parameter $\theta _0$.
LA - eng
KW - $M$-estimation; nonlinear regression; longitudinal data
UR - http://eudml.org/doc/33840
ER -
References
top- Andersen P. K., Borgan Ø., Counting process for life history data: A review, Scand. J. Statistist. 12 (1985), 97–158 (1985) MR0808151
- Andersen P. K., Borgan Ø., Gill R. D., Keiding N., Statistical Models Based on Counting Processes, Springer, New York 1991 Zbl0824.60003
- Billingsley P., Covergence of Probability Measures, Wiley, New York 1999 MR1700749
- Boel R., Varaiya, P., Wong E., 10.1137/0313064, SIAM J. Control 13 (1975), 999–1061 (1975) Zbl0372.60062MR0400379DOI10.1137/0313064
- Diggle P. J., Heagerty P., Liang K. Y., Zeger S. L., Analysis of Longitudinal Data, Oxford Univ. Press, Oxford 2002 Zbl1031.62002MR2049007
- Flemming T. R., Harrington D. P., Counting Processes and Survival Analysis, Wiley, New York 1991 MR1100924
- Huber P. J., Robust Statistics, Wiley, New York 1981 MR0606374
- Jacobsen M., Statistical Analysis of Counting Processes, Springer, New York 1982 Zbl0518.60065MR0676128
- Jacod J., Shiryaev A. N., Limit Theorems for Stochastic Processes, Springer, New York 2002 Zbl1018.60002MR0959133
- Jarník V., Differential Calculus II (in Czech), Academia, Prague 1984
- Jurečková J., Sen P. K., Uniform second order asymptotic linearity of -statistics in linear models, Statist. Decisions 7 (1989), 263–276 (1989) MR1029480
- Klein J. P., Moeschberger M. L., Survival Analysis, Springer, New York 1997 Zbl1011.62106
- Last G., Brandt A., Marked Point Processes on the Real Line, The Dynamic Approach, Springer, New York 1995 Zbl0829.60038MR1353912
- Lehmann E., Theory of Point Estimation, Wiley, New York 1983 Zbl0916.62017MR0702834
- Liang K. Y., Zeger S. L., 10.1093/biomet/73.1.13, Biometrika 73 (1986), 13–22 (1986) Zbl0595.62110MR0836430DOI10.1093/biomet/73.1.13
- Lindsey J. K., Models for Repeated Measurements, Oxford Univ. Press, Oxford 1999 MR1256487
- Martinussen T., Scheike T. H., A Non-Parametric Dynamic Additive Regression Model for Longitudinal Data, Research Report, Copenhagen 1998
- Martinussen T., Scheike T. H., A Semi-Parametric Additive Regression Model for Longitudinal Data, Research Report, Copenhagen 1998
- Orsáková M., Models for censored data, In: Proc. Annual Conference of Doctoral Students WDS’99, Faculty of Mathematics and Physics, Charles Univ. Prague 1999
- Orsáková M., Regression models for longitudinal data, In: Proc. Robust’2000, Union of the Czech Mathematicians and Physicists, Prague 2001, pp. 210–216
- Rebolledo R., 10.1007/BF00587353, Z. Wahrsch. verw. Geb. 51 (1980), 269–286 (1980) MR0566321DOI10.1007/BF00587353
- Rubio A. M., Víšek J. Á., A note on asymptotic linearity of -statistics in nonlinear models, Kybernetika 32 (1996), 353–374 (1996) Zbl0882.62053MR1420128
- Scheike T. H., Parametric regression for longitudinal data with counting process measurement times, Scand. J. Statistist. 21 (1994), 245–263 (1994) Zbl0815.62064MR1292638
- Scheike T. H., Zhang M., Cumulative regression tests for longitudinal data, Annals Statist. (1998), 1328–1354 (1998)
- Štěpán J., The Theory of Probability (in Czech), Academia, Prague 1987
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.