M -estimation in nonlinear regression for longitudinal data

Martina Orsáková

Kybernetika (2007)

  • Volume: 43, Issue: 1, page 61-74
  • ISSN: 0023-5954

Abstract

top
The longitudinal regression model Z i j = m ( θ 0 , 𝕏 i ( T i j ) ) + ε i j , where Z i j is the j th measurement of the i th subject at random time T i j , m is the regression function, 𝕏 i ( T i j ) is a predictable covariate process observed at time T i j and ε i j is a noise, is studied in marked point process framework. In this paper we introduce the assumptions which guarantee the consistency and asymptotic normality of smooth M -estimator of unknown parameter θ 0 .

How to cite

top

Orsáková, Martina. "$M$-estimation in nonlinear regression for longitudinal data." Kybernetika 43.1 (2007): 61-74. <http://eudml.org/doc/33840>.

@article{Orsáková2007,
abstract = {The longitudinal regression model $Z_i^j=m(\theta _0,\{\mathbb \{X\}\}_i(T_i^j))+ \varepsilon _i^j,$ where $Z_i^j$ is the $j$th measurement of the $i$th subject at random time $T_i^j$, $m$ is the regression function, $\{\mathbb \{X\}\}_i(T_i^j)$ is a predictable covariate process observed at time $T_i^j$ and $\varepsilon _i^j$ is a noise, is studied in marked point process framework. In this paper we introduce the assumptions which guarantee the consistency and asymptotic normality of smooth $M$-estimator of unknown parameter $\theta _0$.},
author = {Orsáková, Martina},
journal = {Kybernetika},
keywords = {$M$-estimation; nonlinear regression; longitudinal data},
language = {eng},
number = {1},
pages = {61-74},
publisher = {Institute of Information Theory and Automation AS CR},
title = {$M$-estimation in nonlinear regression for longitudinal data},
url = {http://eudml.org/doc/33840},
volume = {43},
year = {2007},
}

TY - JOUR
AU - Orsáková, Martina
TI - $M$-estimation in nonlinear regression for longitudinal data
JO - Kybernetika
PY - 2007
PB - Institute of Information Theory and Automation AS CR
VL - 43
IS - 1
SP - 61
EP - 74
AB - The longitudinal regression model $Z_i^j=m(\theta _0,{\mathbb {X}}_i(T_i^j))+ \varepsilon _i^j,$ where $Z_i^j$ is the $j$th measurement of the $i$th subject at random time $T_i^j$, $m$ is the regression function, ${\mathbb {X}}_i(T_i^j)$ is a predictable covariate process observed at time $T_i^j$ and $\varepsilon _i^j$ is a noise, is studied in marked point process framework. In this paper we introduce the assumptions which guarantee the consistency and asymptotic normality of smooth $M$-estimator of unknown parameter $\theta _0$.
LA - eng
KW - $M$-estimation; nonlinear regression; longitudinal data
UR - http://eudml.org/doc/33840
ER -

References

top
  1. Andersen P. K., Borgan Ø., Counting process for life history data: A review, Scand. J. Statistist. 12 (1985), 97–158 (1985) MR0808151
  2. Andersen P. K., Borgan Ø., Gill R. D., Keiding N., Statistical Models Based on Counting Processes, Springer, New York 1991 Zbl0824.60003
  3. Billingsley P., Covergence of Probability Measures, Wiley, New York 1999 MR1700749
  4. Boel R., Varaiya, P., Wong E., 10.1137/0313064, SIAM J. Control 13 (1975), 999–1061 (1975) Zbl0372.60062MR0400379DOI10.1137/0313064
  5. Diggle P. J., Heagerty P., Liang K. Y., Zeger S. L., Analysis of Longitudinal Data, Oxford Univ. Press, Oxford 2002 Zbl1031.62002MR2049007
  6. Flemming T. R., Harrington D. P., Counting Processes and Survival Analysis, Wiley, New York 1991 MR1100924
  7. Huber P. J., Robust Statistics, Wiley, New York 1981 MR0606374
  8. Jacobsen M., Statistical Analysis of Counting Processes, Springer, New York 1982 Zbl0518.60065MR0676128
  9. Jacod J., Shiryaev A. N., Limit Theorems for Stochastic Processes, Springer, New York 2002 Zbl1018.60002MR0959133
  10. Jarník V., Differential Calculus II (in Czech), Academia, Prague 1984 
  11. Jurečková J., Sen P. K., Uniform second order asymptotic linearity of M -statistics in linear models, Statist. Decisions 7 (1989), 263–276 (1989) MR1029480
  12. Klein J. P., Moeschberger M. L., Survival Analysis, Springer, New York 1997 Zbl1011.62106
  13. Last G., Brandt A., Marked Point Processes on the Real Line, The Dynamic Approach, Springer, New York 1995 Zbl0829.60038MR1353912
  14. Lehmann E., Theory of Point Estimation, Wiley, New York 1983 Zbl0916.62017MR0702834
  15. Liang K. Y., Zeger S. L., 10.1093/biomet/73.1.13, Biometrika 73 (1986), 13–22 (1986) Zbl0595.62110MR0836430DOI10.1093/biomet/73.1.13
  16. Lindsey J. K., Models for Repeated Measurements, Oxford Univ. Press, Oxford 1999 MR1256487
  17. Martinussen T., Scheike T. H., A Non-Parametric Dynamic Additive Regression Model for Longitudinal Data, Research Report, Copenhagen 1998 
  18. Martinussen T., Scheike T. H., A Semi-Parametric Additive Regression Model for Longitudinal Data, Research Report, Copenhagen 1998 
  19. Orsáková M., Models for censored data, In: Proc. Annual Conference of Doctoral Students WDS’99, Faculty of Mathematics and Physics, Charles Univ. Prague 1999 
  20. Orsáková M., Regression models for longitudinal data, In: Proc. Robust’2000, Union of the Czech Mathematicians and Physicists, Prague 2001, pp. 210–216 
  21. Rebolledo R., 10.1007/BF00587353, Z. Wahrsch. verw. Geb. 51 (1980), 269–286 (1980) MR0566321DOI10.1007/BF00587353
  22. Rubio A. M., Víšek J. Á., A note on asymptotic linearity of M -statistics in nonlinear models, Kybernetika 32 (1996), 353–374 (1996) Zbl0882.62053MR1420128
  23. Scheike T. H., Parametric regression for longitudinal data with counting process measurement times, Scand. J. Statistist. 21 (1994), 245–263 (1994) Zbl0815.62064MR1292638
  24. Scheike T. H., Zhang M., Cumulative regression tests for longitudinal data, Annals Statist. (1998), 1328–1354 (1998) 
  25. Štěpán J., The Theory of Probability (in Czech), Academia, Prague 1987 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.