A new characterization of geometric distribution

Sudhansu S. Maiti; Atanu Biswas

Kybernetika (2007)

  • Volume: 43, Issue: 1, page 97-102
  • ISSN: 0023-5954

Abstract

top
A characterization of geometric distribution is given, which is based on the ratio of the real and imaginary part of the characteristic function.

How to cite

top

Maiti, Sudhansu S., and Biswas, Atanu. "A new characterization of geometric distribution." Kybernetika 43.1 (2007): 97-102. <http://eudml.org/doc/33843>.

@article{Maiti2007,
abstract = {A characterization of geometric distribution is given, which is based on the ratio of the real and imaginary part of the characteristic function.},
author = {Maiti, Sudhansu S., Biswas, Atanu},
journal = {Kybernetika},
keywords = {discrete distribution; exponential; lack of memory; discrete distribution; exponential; lack of memory},
language = {eng},
number = {1},
pages = {97-102},
publisher = {Institute of Information Theory and Automation AS CR},
title = {A new characterization of geometric distribution},
url = {http://eudml.org/doc/33843},
volume = {43},
year = {2007},
}

TY - JOUR
AU - Maiti, Sudhansu S.
AU - Biswas, Atanu
TI - A new characterization of geometric distribution
JO - Kybernetika
PY - 2007
PB - Institute of Information Theory and Automation AS CR
VL - 43
IS - 1
SP - 97
EP - 102
AB - A characterization of geometric distribution is given, which is based on the ratio of the real and imaginary part of the characteristic function.
LA - eng
KW - discrete distribution; exponential; lack of memory; discrete distribution; exponential; lack of memory
UR - http://eudml.org/doc/33843
ER -

References

top
  1. Arnold B. C., 10.2307/3213048, J. Appl. Probab. 17 (1980), 570–573 (1980) Zbl0428.60017MR0568969DOI10.2307/3213048
  2. Bary N. K., A Treatise on Trigonometric Series, Pergamon Press, Oxford 1964 Zbl0129.28002
  3. Crawford G. B., 10.1214/aoms/1177699167, Ann. Math. Statist. 37 (1966), 1790–1795 (1966) Zbl0144.42303MR0207009DOI10.1214/aoms/1177699167
  4. El-Neweihi E., Govindarajulu Z., 10.1016/0378-3758(79)90044-2, J. Statist. Plann. Inf. 3 (1979), 85–90 (1979) MR0529875DOI10.1016/0378-3758(79)90044-2
  5. Ferguson T. S., 10.2307/2313692, Amer. Math. Monthly 71 (1965), 256–260 (1965) Zbl0127.10705MR0193653DOI10.2307/2313692
  6. Ferguson T. S., On characterizing distributions by properties of order statistics, Sankhya Series A 20 (1967), 265–278 (1967) Zbl0155.27302MR0226804
  7. Ferguson T. S., On a Rao-Shanbhag characterization of the exponential/geometric distribution, Sankhya Series A 64 (2002), 247–255 Zbl1192.62033MR1981756
  8. Fosam E. B., Shanbhag D. N., Certain characterizations of exponential and geometric distributions, J. Royal Statist. Soc. Series B 56 (1994), 157–160 (1994) Zbl0788.62016MR1257803
  9. (1975) J. Galambos, Characterizations of probability distributions by properties of order statistics, In: Statistical Distributions in Scientific Work, Vol. 2: Characterizations and Appplications (G. P. Patil, S. Kotz, and J. K. Ord, eds.), D. Reidel, Boston 1975, II, pp. 89–101 (1975) 
  10. Henze N., Meintanis S. G., 10.1081/STA-120013007, Commun. Statist. – Theory and Methods 31 (2002), 1479–1497 Zbl1008.62043MR1925077DOI10.1081/STA-120013007
  11. Hitha N., Nair U. N., Characterization of some discrete models by properties of residual life function, Cal. Statist. Assoc. Bulletin 38 (1989), 219–223 (1989) Zbl0715.62023MR1060161
  12. Kalbfleish J. D., Prentice R. L., The Statistical Analysis of Failure Time Data, Wiley, New York 1980 MR0570114
  13. Meintanis S. G., Iliopoulos G., Characterizations of the exponential distribution based on certain properties of its characteristic function, Kybernetika 39 (2003), 295–298 MR1995733
  14. Rainville E. D., Infinite Series, The Macmillan Company, New York 1967 Zbl0173.05702
  15. Rao B. L. S. P., Sreehari M., On some properties of geometric distribution, Sankhya Series A 42 (1980), 120–122 (1980) MR0637996
  16. Rogers G. S., 10.2307/2312673, Amer. Math. Monthly 70 (1963), 857–858 (1963) MR1532316DOI10.2307/2312673
  17. Roy D., Gupta R. P., 10.1016/S0167-7152(98)00260-0, Statist. Probab. Letters 43 (1999), 197–206 (1999) MR1693301DOI10.1016/S0167-7152(98)00260-0
  18. Srivastava R. C., 10.1080/01621459.1974.10480169, J. Amer. Statist. Assoc. 69 (1974), 267–269 (1974) Zbl0311.60012MR0381074DOI10.1080/01621459.1974.10480169
  19. Xekalaki E., 10.1080/03610928308828617, Commun. Statist. – Theory and Methods 12 (1983), 2503–2509 (1983) MR0715179DOI10.1080/03610928308828617

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.