-separation axioms in ordered fuzzy topological spaces
Elango Roja; Mallasamudram Kuppusamy Uma; Ganesan Balasubramanian
Kybernetika (2007)
- Volume: 43, Issue: 1, page 103-111
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topRoja, Elango, Uma, Mallasamudram Kuppusamy, and Balasubramanian, Ganesan. "$G_\delta $-separation axioms in ordered fuzzy topological spaces." Kybernetika 43.1 (2007): 103-111. <http://eudml.org/doc/33844>.
@article{Roja2007,
abstract = {$G_\delta $-separation axioms are introduced in ordered fuzzy topological spaces and some of their basic properties are investigated besides establishing an analogue of Urysohn’s lemma.},
author = {Roja, Elango, Uma, Mallasamudram Kuppusamy, Balasubramanian, Ganesan},
journal = {Kybernetika},
keywords = {fuzzy $G_\delta $-neighbourhood; fuzzy $G_\delta $–$T_1$-ordered spaces; fuzzy $G_\delta $–$T_2$ ordered spaces; fuzzy topology; separation axioms; fuzzy ordered spaces},
language = {eng},
number = {1},
pages = {103-111},
publisher = {Institute of Information Theory and Automation AS CR},
title = {$G_\delta $-separation axioms in ordered fuzzy topological spaces},
url = {http://eudml.org/doc/33844},
volume = {43},
year = {2007},
}
TY - JOUR
AU - Roja, Elango
AU - Uma, Mallasamudram Kuppusamy
AU - Balasubramanian, Ganesan
TI - $G_\delta $-separation axioms in ordered fuzzy topological spaces
JO - Kybernetika
PY - 2007
PB - Institute of Information Theory and Automation AS CR
VL - 43
IS - 1
SP - 103
EP - 111
AB - $G_\delta $-separation axioms are introduced in ordered fuzzy topological spaces and some of their basic properties are investigated besides establishing an analogue of Urysohn’s lemma.
LA - eng
KW - fuzzy $G_\delta $-neighbourhood; fuzzy $G_\delta $–$T_1$-ordered spaces; fuzzy $G_\delta $–$T_2$ ordered spaces; fuzzy topology; separation axioms; fuzzy ordered spaces
UR - http://eudml.org/doc/33844
ER -
References
top- Azad K. A., 10.1016/0022-247X(81)90222-5, J. Math. Anal. Appl. 82 (1981), 14–32 (1981) Zbl0511.54006MR0626738DOI10.1016/0022-247X(81)90222-5
- Balasubramanian G., Maximal fuzzy topologies, Kybernetika 31 (1995), 459–464 (1995) Zbl0856.54004MR1361307
- Chang C. L., 10.1016/0022-247X(68)90057-7, J. Math. Anal. Appl. 24 (1968), 182–190 (1968) Zbl0167.51001MR0236859DOI10.1016/0022-247X(68)90057-7
- Katsaras A. K., 10.1016/0022-247X(81)90150-5, J. Math. Anal. Appl. 84 (1981), 44–58 (1981) Zbl0512.54005MR0639523DOI10.1016/0022-247X(81)90150-5
- Smets P., 10.1016/0020-0255(81)90008-6, Inform. Sci. 25 (1981), 1–19 (1981) Zbl0472.62005MR0651984DOI10.1016/0020-0255(81)90008-6
- Sostak A. P., On a fuzzy topological structure, Suppl. Rend. Circ. Mat. Palermo 11 (1985), 89–103 (1985) Zbl0638.54007MR0897975
- Sostak A. P., 10.1007/BF02363065, J. Math. Sci. 78 (1996), 662–701 (1996) MR1384343DOI10.1007/BF02363065
- Sugeno M., 10.1016/0020-0255(85)90026-X, Inform. Sci. 36 (1985), 59–83 (1985) Zbl0586.93053MR0813765DOI10.1016/0020-0255(85)90026-X
- Warren R. H., 10.1216/RMJ-1978-8-3-459, Rocky Mountain J. Math. 8 (1978), 459–470 (1978) MR0478091DOI10.1216/RMJ-1978-8-3-459
- Zadeh L. A., 10.1016/S0019-9958(65)90241-X, Inform. Control 8 (1965), 338–353 (1965) Zbl0139.24606MR0219427DOI10.1016/S0019-9958(65)90241-X
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.