G δ -separation axioms in ordered fuzzy topological spaces

Elango Roja; Mallasamudram Kuppusamy Uma; Ganesan Balasubramanian

Kybernetika (2007)

  • Volume: 43, Issue: 1, page 103-111
  • ISSN: 0023-5954

Abstract

top
G δ -separation axioms are introduced in ordered fuzzy topological spaces and some of their basic properties are investigated besides establishing an analogue of Urysohn’s lemma.

How to cite

top

Roja, Elango, Uma, Mallasamudram Kuppusamy, and Balasubramanian, Ganesan. "$G_\delta $-separation axioms in ordered fuzzy topological spaces." Kybernetika 43.1 (2007): 103-111. <http://eudml.org/doc/33844>.

@article{Roja2007,
abstract = {$G_\delta $-separation axioms are introduced in ordered fuzzy topological spaces and some of their basic properties are investigated besides establishing an analogue of Urysohn’s lemma.},
author = {Roja, Elango, Uma, Mallasamudram Kuppusamy, Balasubramanian, Ganesan},
journal = {Kybernetika},
keywords = {fuzzy $G_\delta $-neighbourhood; fuzzy $G_\delta $–$T_1$-ordered spaces; fuzzy $G_\delta $–$T_2$ ordered spaces; fuzzy topology; separation axioms; fuzzy ordered spaces},
language = {eng},
number = {1},
pages = {103-111},
publisher = {Institute of Information Theory and Automation AS CR},
title = {$G_\delta $-separation axioms in ordered fuzzy topological spaces},
url = {http://eudml.org/doc/33844},
volume = {43},
year = {2007},
}

TY - JOUR
AU - Roja, Elango
AU - Uma, Mallasamudram Kuppusamy
AU - Balasubramanian, Ganesan
TI - $G_\delta $-separation axioms in ordered fuzzy topological spaces
JO - Kybernetika
PY - 2007
PB - Institute of Information Theory and Automation AS CR
VL - 43
IS - 1
SP - 103
EP - 111
AB - $G_\delta $-separation axioms are introduced in ordered fuzzy topological spaces and some of their basic properties are investigated besides establishing an analogue of Urysohn’s lemma.
LA - eng
KW - fuzzy $G_\delta $-neighbourhood; fuzzy $G_\delta $–$T_1$-ordered spaces; fuzzy $G_\delta $–$T_2$ ordered spaces; fuzzy topology; separation axioms; fuzzy ordered spaces
UR - http://eudml.org/doc/33844
ER -

References

top
  1. Azad K. A., 10.1016/0022-247X(81)90222-5, J. Math. Anal. Appl. 82 (1981), 14–32 (1981) Zbl0511.54006MR0626738DOI10.1016/0022-247X(81)90222-5
  2. Balasubramanian G., Maximal fuzzy topologies, Kybernetika 31 (1995), 459–464 (1995) Zbl0856.54004MR1361307
  3. Chang C. L., 10.1016/0022-247X(68)90057-7, J. Math. Anal. Appl. 24 (1968), 182–190 (1968) Zbl0167.51001MR0236859DOI10.1016/0022-247X(68)90057-7
  4. Katsaras A. K., 10.1016/0022-247X(81)90150-5, J. Math. Anal. Appl. 84 (1981), 44–58 (1981) Zbl0512.54005MR0639523DOI10.1016/0022-247X(81)90150-5
  5. Smets P., 10.1016/0020-0255(81)90008-6, Inform. Sci. 25 (1981), 1–19 (1981) Zbl0472.62005MR0651984DOI10.1016/0020-0255(81)90008-6
  6. Sostak A. P., On a fuzzy topological structure, Suppl. Rend. Circ. Mat. Palermo 11 (1985), 89–103 (1985) Zbl0638.54007MR0897975
  7. Sostak A. P., 10.1007/BF02363065, J. Math. Sci. 78 (1996), 662–701 (1996) MR1384343DOI10.1007/BF02363065
  8. Sugeno M., 10.1016/0020-0255(85)90026-X, Inform. Sci. 36 (1985), 59–83 (1985) Zbl0586.93053MR0813765DOI10.1016/0020-0255(85)90026-X
  9. Warren R. H., 10.1216/RMJ-1978-8-3-459, Rocky Mountain J. Math. 8 (1978), 459–470 (1978) MR0478091DOI10.1216/RMJ-1978-8-3-459
  10. Zadeh L. A., 10.1016/S0019-9958(65)90241-X, Inform. Control 8 (1965), 338–353 (1965) Zbl0139.24606MR0219427DOI10.1016/S0019-9958(65)90241-X

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.