A new numerical model for propagation of tsunami waves
Kybernetika (2007)
- Volume: 43, Issue: 6, page 893-902
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topReferences
top- Bona J. L., Chen M., Saut J.-C., 10.1007/s00332-002-0466-4, I: Derivation and linear theory. J. Nonlinear Sci. 12 (2002), 283–318 Zbl1059.35103MR1915939DOI10.1007/s00332-002-0466-4
- Kikuchi N., An approach to the construction of Morse flows for variational functionals, In: Nematics – Mathematical and Physical Aspects (J. M. Coron, J. M. Ghidaglia, and F. Hélein, eds.), NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci. 332 (1991), Kluwer Academic Publishers, Dodrecht – Boston – London, pp. 195–198 (1991) Zbl0850.76043MR1178095
- Nagasawa T., Omata S., Discrete Morse semiflows of a functional with free boundary, Adv. Math. Sci. Appl. 2 (1993), 147–187 (1993) Zbl0795.35150MR1239254
- Omata S., 10.1016/S0362-546X(97)00397-0, Nonlinear Anal. 30 (1997), 2181–2187 (1997) MR1490340DOI10.1016/S0362-546X(97)00397-0
- Švadlenka K., Omata S., Construction of weak solution to hyperbolic problem with volume constraint, Submitted to Nonlinear Anal
- Yamazaki T., Omata S., Švadlenka, K., Ohara K., Construction of approximate solution to a hyperbolic free boundary problem with volume constraint and its numerical computation, Adv. Math. Sci. Appl. 16 (2006), 57–67 Zbl1122.35159MR2253225
- Yoshiuchi H., Omata S., Švadlenka, K., Ohara K., Numerical solution of film vibration with obstacle, Adv. Math. Sci. Appl. 16 (2006), 33–43 Zbl1122.35160MR2253223