Non-parametric approximation of non-anticipativity constraints in scenario-based multistage stochastic programming
Jean-Sébastien Roy; Arnaud Lenoir
Kybernetika (2008)
- Volume: 44, Issue: 2, page 171-184
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topRoy, Jean-Sébastien, and Lenoir, Arnaud. "Non-parametric approximation of non-anticipativity constraints in scenario-based multistage stochastic programming." Kybernetika 44.2 (2008): 171-184. <http://eudml.org/doc/33920>.
@article{Roy2008,
abstract = {We propose two methods to solve multistage stochastic programs when only a (large) finite set of scenarios is available. The usual scenario tree construction to represent non-anticipativity constraints is replaced by alternative discretization schemes coming from non-parametric estimation ideas. In the first method, a penalty term is added to the objective so as to enforce the closeness between decision variables and the Nadaraya–Watson estimation of their conditional expectation. A numerical application of this approach on an hydro-power plant management problem is developed. The second method exploits the interpretation of kernel estimators as a sum of basis functions.},
author = {Roy, Jean-Sébastien, Lenoir, Arnaud},
journal = {Kybernetika},
keywords = {multistage stochastic programming; scenarios; discrete approximation; multistage stochastic programming; scenarios; discrete approximation},
language = {eng},
number = {2},
pages = {171-184},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Non-parametric approximation of non-anticipativity constraints in scenario-based multistage stochastic programming},
url = {http://eudml.org/doc/33920},
volume = {44},
year = {2008},
}
TY - JOUR
AU - Roy, Jean-Sébastien
AU - Lenoir, Arnaud
TI - Non-parametric approximation of non-anticipativity constraints in scenario-based multistage stochastic programming
JO - Kybernetika
PY - 2008
PB - Institute of Information Theory and Automation AS CR
VL - 44
IS - 2
SP - 171
EP - 184
AB - We propose two methods to solve multistage stochastic programs when only a (large) finite set of scenarios is available. The usual scenario tree construction to represent non-anticipativity constraints is replaced by alternative discretization schemes coming from non-parametric estimation ideas. In the first method, a penalty term is added to the objective so as to enforce the closeness between decision variables and the Nadaraya–Watson estimation of their conditional expectation. A numerical application of this approach on an hydro-power plant management problem is developed. The second method exploits the interpretation of kernel estimators as a sum of basis functions.
LA - eng
KW - multistage stochastic programming; scenarios; discrete approximation; multistage stochastic programming; scenarios; discrete approximation
UR - http://eudml.org/doc/33920
ER -
References
top- Babuska I., Melenk J., The partition of unity method, International Journal for Numerical Methods in Engineering 40 (1998), 727–758 (1998) MR1429534
- Barty K., Contributions à la discrétisation des contraintes de mesurabilité pour les problčmes d’optimisation stochastiques, PhD. Thesis, Ecole nationale des ponts et chaussées, 2004
- Cohen G., Optimal scenario tree topology and corresponding rate of convergence, In: Proc. 11th Conference on Stochastic Programming, 2007
- Dallagi A., Méthodes particulaires en commande optimale stochastique, PhD. Thesis, Université Paris I, 2007
- Devroye L. P., On the almost everywhere convergence of nonparametric regression function estimates, Ann. Statist. 9 (1981), 1310–1319 (1981) Zbl0477.62025MR0630113
- Devroye L. P., Wagner T., Distribution-free consistency results in nonparametric discrimination and regression function estimation, Ann. Statist. 8 (1980), 231–239 (1980) Zbl0431.62025MR0560725
- Gröwe-Kuska N., Heitsch, H., Römisch W., Scenario reduction and scenario tree construction for power management problem, In: Power Tech Conference Proceedings, IEEE Bologna, 2003
- Heitsch H., Römisch W., Generation of multivariate scenario trees to model stochasticity in power management, IEEE St. Petersburg Power Tech 2005, 2005
- Heitsch H., Römisch W., Scenario Tree Modeling for Multistage Stochastic Programs, Preprint Humboldt-University Berlin, Institute of Mathematics, 2005 Zbl1173.90007MR2470797
- Nadaraya E., On estimating regression, Theory Probab. Appl. 9 (1964), 141–142 (1964) Zbl0136.40902
- Pennanen T., Epi-convergent discretizations of multistage stochastic programs, Math. Oper. Res. 30 (2005), 245–256 Zbl1165.90014MR2125146
- Spiegelman C., Sacks J., Consistent window estimation in nonparametric regression, Ann. Statist. 8 (1980), 240–246 (1980) Zbl0432.62066MR0560726
- Watson G., Smooth regression analysis, Sankhya Ser. A 26 (1964), 359–372 (1964) Zbl0137.13002MR0185765
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.