The Frisch scheme in algebraic and dynamic identification problems

Roberto P. Guidorzi; Roberto Diversi; Umberto Soverini

Kybernetika (2008)

  • Volume: 44, Issue: 5, page 585-616
  • ISSN: 0023-5954

Abstract

top
This paper considers the problem of determining linear relations from data affected by additive noise in the context of the Frisch scheme. The loci of solutions of the Frisch scheme and their properties are first described in the algebraic case. In this context two main problems are analyzed: the evaluation of the maximal number of linear relations compatible with data affected by errors and the determination of the linear relation actually linking the noiseless data. Subsequently the extension of the Frisch scheme to the identification of dynamical systems is considered for both SISO and MIMO cases and the problem of its application to real processes is investigated. For this purpose suitable identification criteria and model parametrizations are described. Finally two classical identification problems are mapped into the Frisch scheme, the blind identification of FIR channels and the identification of AR + noise models. This allows some theoretical and practical extensions.

How to cite

top

Guidorzi, Roberto P., Diversi, Roberto, and Soverini, Umberto. "The Frisch scheme in algebraic and dynamic identification problems." Kybernetika 44.5 (2008): 585-616. <http://eudml.org/doc/33952>.

@article{Guidorzi2008,
abstract = {This paper considers the problem of determining linear relations from data affected by additive noise in the context of the Frisch scheme. The loci of solutions of the Frisch scheme and their properties are first described in the algebraic case. In this context two main problems are analyzed: the evaluation of the maximal number of linear relations compatible with data affected by errors and the determination of the linear relation actually linking the noiseless data. Subsequently the extension of the Frisch scheme to the identification of dynamical systems is considered for both SISO and MIMO cases and the problem of its application to real processes is investigated. For this purpose suitable identification criteria and model parametrizations are described. Finally two classical identification problems are mapped into the Frisch scheme, the blind identification of FIR channels and the identification of AR + noise models. This allows some theoretical and practical extensions.},
author = {Guidorzi, Roberto P., Diversi, Roberto, Soverini, Umberto},
journal = {Kybernetika},
keywords = {system identification; errors-in-variables models; Frisch scheme; linear systems; system identification; errors-in-variables models; Frisch scheme; linear systems},
language = {eng},
number = {5},
pages = {585-616},
publisher = {Institute of Information Theory and Automation AS CR},
title = {The Frisch scheme in algebraic and dynamic identification problems},
url = {http://eudml.org/doc/33952},
volume = {44},
year = {2008},
}

TY - JOUR
AU - Guidorzi, Roberto P.
AU - Diversi, Roberto
AU - Soverini, Umberto
TI - The Frisch scheme in algebraic and dynamic identification problems
JO - Kybernetika
PY - 2008
PB - Institute of Information Theory and Automation AS CR
VL - 44
IS - 5
SP - 585
EP - 616
AB - This paper considers the problem of determining linear relations from data affected by additive noise in the context of the Frisch scheme. The loci of solutions of the Frisch scheme and their properties are first described in the algebraic case. In this context two main problems are analyzed: the evaluation of the maximal number of linear relations compatible with data affected by errors and the determination of the linear relation actually linking the noiseless data. Subsequently the extension of the Frisch scheme to the identification of dynamical systems is considered for both SISO and MIMO cases and the problem of its application to real processes is investigated. For this purpose suitable identification criteria and model parametrizations are described. Finally two classical identification problems are mapped into the Frisch scheme, the blind identification of FIR channels and the identification of AR + noise models. This allows some theoretical and practical extensions.
LA - eng
KW - system identification; errors-in-variables models; Frisch scheme; linear systems; system identification; errors-in-variables models; Frisch scheme; linear systems
UR - http://eudml.org/doc/33952
ER -

References

top
  1. Abed-Meraim K., Qiu, W., Hua Y., Blind system identification, Proc. IEEE 85 (1997), 1310–1322 (1997) 
  2. Anderson B. D. O., Deistler M., Identifiability of dynamic errors-in-variables models, J. Time Ser. Anal. 5 (1984), 1–13 (1984) MR0747410
  3. Anderson B. D. O., Deistler, M., Scherrer W., Solution set properties for static errors-in-variables problems, Automatica 32 (1996), 1031–1035 (1996) Zbl0854.93032MR1405459
  4. Beghelli S., Castaldi P., Guidorzi, R., Soverini U., A robust criterion for model selection in identification from noisy data, In: Proc. 9th International Conference on Systems Engineering, Las Vegas 1993, pp. 480–484 (1993) 
  5. Beghelli S., Guidorzi, R., Soverini U., The Frisch scheme in dynamic system identification, Automatica 26 (1990), 171–176 (1990) Zbl0714.93058MR1101663
  6. Bobillet W., Grivel E., Guidorzi, R., Najim M., Noisy speech de-reverberation as a SIMO system identification issue, In: Proc. IEEE Workshop on Statistical Signal Processing, Bordeaux 2005 
  7. Bobillet W., Diversi R., Grivel E., Guidorzi R., Najim, M., Soverini U., Speech enhancement combining optimal smoothing and errors-in-variables identification of noisy AR processes, IEEE Trans. Signal Process. 55 (2007), 5564–5578 MR2440193
  8. Deistler M., Linear errors-in-variables models, In: Time Series and Linear Systems (Lecture Notes in Control and Information Sciences; S. Bittanti, ed.). Springer–Verlag, Berlin 1986, pp. 37–67 (1986) MR0897821
  9. Diversi R., Guidorzi, R., Soverini U., A new criterion in EIV identification and filtering applications, In: Preprints 13th IFAC Symposium on System Identification, Rotterdam 2003, pp. 1993–1998 (1993) 
  10. Diversi R., Guidorzi, R., Soverini U., Frisch scheme-based algorithms for EIV identification, In: Proc. 12th IEEE Mediterranean Conference on Control and Automation, Kusadasi 2004 
  11. Diversi R., Guidorzi, R., Soverini U., Blind identification and equalization of two-channel FIR systems in unbalanced noise environments, Signal Process. 85 (2005), 215–225 Zbl1148.94395
  12. Diversi R., Guidorzi, R., Soverini U., A noise-compensated estimation scheme for AR processes, In: Proc. 44th IEEE Conference on Decision and Control and 8th European Control Conference, Seville 2005, pp. 4146–4151 
  13. Diversi R., Guidorzi, R., Soverini U., Yule–Walker equations in the Frisch scheme solution of errors-in-variables identification problems, In: Proc. 17th International Symposium on Mathematical Theory of Networks and Systems, Kyoto 2006, pp. 391–395 
  14. Diversi R., Guidorzi, R., Soverini U., Identification of autoregressive models in the presence of additive noise, International J. Adaptive Control and Signal Process. 22 (2008), 465–481 MR2442414
  15. Diversi R., Soverini, U., Guidorzi R., A new estimation approach for AR models in presence of noise, In: Preprints 16th IFAC World Congress, Prague 2005 MR2164442
  16. Fernando K. V., Nicholson H., Identification of linear systems with input and output noise: the Koopmans–Levin method, IEE Proc. 132 (1985), 30–36 (1985) Zbl0554.93071
  17. Frisch R., Statistical Confluence Analysis by Means of Complete Regression Systems, Economic Institute, Pub. No. 5, Oslo University 1934 Zbl0011.21903
  18. Guidorzi R., Equivalence, invariance and dynamical system canonical modelling, Part I, Kybernetika 25 (1989), 233–257, Part II, Kybernetika 25 (1989), 386–407 (1989) Zbl0699.93006
  19. Guidorzi R., Certain models from uncertain data: the algebraic case, Systems Control Lett. 17 (1991), 415–424 (1991) Zbl0749.93018MR1138941
  20. Guidorzi R., Errors-in-variables identification and model uniqueness, In: Statistical Modelling and Latent Variables (K. Haagen, D. J. Bartholomew, and M. Deistler, eds.), North Holland, Amsterdam 1993, pp. 127–150 (1993) MR1236712
  21. Guidorzi R., Identification of the maximal number of linear relations from noisy data, Systems Control Lett. 24 (1995), 159–166 (1995) Zbl0877.93131MR1314413
  22. Guidorzi R., Identification of multivariable processes in the Frisch scheme context, MTNS’96, St. Louis 1996 
  23. Guidorzi R., Diversi R., Determination of linear relations from real data in the Frisch scheme context, In: Proc. 17th International Symposium on Mathematical Theory of Networks and Systems, Kyoto 2006, pp. 530–535 
  24. Guidorzi R., Diversi, R., Soverini U., Blind identification and equalization of multichannel FIR systems in unbalanced noise environments, Signal Process. 87 (2007), 654–664 Zbl1186.94137
  25. Guidorzi R., Diversi R., Soverini, U., Valentini A., A noise signature approach to fault detection and isolation, In: Proc. 16th International Symposium on Mathematical Theory of Networks and Systems, Leuven 2004 
  26. Guidorzi R., Pierantoni M., A new parametrization of Frisch scheme solutions, In: Proc. XII International Conference on Systems Science, Wroclaw 1995, pp. 114–120 (1995) 
  27. Guidorzi R., Soverini, U., Diversi R., Multivariable EIV identification, In: Proc. 10th IEEE Mediterranean Conference on Control and Automation, Lisboa 2002 
  28. Guidorzi R., Stoian A., On the computation of the maximal corank of a covariance matrix under the Frisch scheme, In: Proc. 10th IFAC Symposium on System Identification, Copenhagen 1994, pp. 171–173 (1994) 
  29. Kalman R. E., Identification from real data, In: Current Developments in the Interface: Economics, Econometrics, Mathematics (M. Hazewinkel, H. G. Rinnooy Kan, and D. Reidel, eds.), Dordrecht 1982, pp. 161–196 (1982) 
  30. Kalman R. E., Nine Lectures on Identification, (Lecture Notes on Economics and Mathematical Systems.) Springer–Verlag, Berlin (to appear) 
  31. Kalman R. E., System identification from noisy data, In: Dynamical Systems II (A. R. Bednarek and L. Cesari, eds.), Academic Press 1982, pp. 135–164 (1982) MR0703692
  32. Kay S. M., The effects of noise on the autoregressive spectral estimator, IEEE Trans. Acoustics, Speech and Signal Process. 27 (1979), 478–485 (1979) Zbl0441.62084
  33. Kay S. M., Noise compensation for autoregressive spectral estimates, IEEE Trans. Acoustics, Speech and Signal Process. 28 (1980), 292–303 (1980) Zbl0519.62082
  34. Levin M. J., Estimation of a system pulse transfer function in the presence of noise, IEEE Trans. Automat. Control 9 (1964), 229–235 (1964) 
  35. Malinvaud E., Méthodes statistiques de l’économétrie, Third edition. Dunod, Paris 1980 Zbl0421.62084
  36. Schachermayer W., Deistler M., The set of observationally equivalent errors-in-variables models, Systems Control Lett. 34 (1998), 101–104 (1998) Zbl0902.93067MR1629016
  37. Söderström T., Errors-in-variables methods in system identification, Automatica 43 (2007), 939–958 Zbl1193.93090MR2306743
  38. Söderström T., Accuracy analysis of the Frisch estimates for identifying errors-in-variables systems, IEEE Trans. Automat. Control 52 (2007), 985–997 MR2329890
  39. Stoica P., Nehorai A., On the uniqueness of prediction error models for systems with noisy input-output data, Automatica 23 (1987), 541–543 (1987) Zbl0616.93074
  40. Tong L., Perreau S., Multichannel blind identification: from subspace to maximum likelihood methods, Proc. IEEE 86 (1998), 1951–1968 (1998) 
  41. (ed.) S. Van Huffel, Recent Advances in Total Least Squares Techniques and Errors-in-Variables Modelling, SIAM, Philadelphia 1997 MR1447457
  42. Huffel S. Van, (eds.) P. Lemmerling, Total Least Squares and Errors-in-Variables Modelling: Analysis, Algorithms and Applications, Kluwer Academic Publishers, Dordrecht 2002 MR1951009
  43. Woodgate K. G., An upper bound on the number of linear relations identified from noisy data by the Frisch scheme, Systems Control Lett. 24 (1995), 153–158 (1995) Zbl0877.93130MR1314412

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.