Extreme distribution functions of copulas

Manuel Úbeda-Flores

Kybernetika (2008)

  • Volume: 44, Issue: 6, page 817-825
  • ISSN: 0023-5954

Abstract

top
In this paper we study some properties of the distribution function of the random variable C(X,Y) when the copula of the random pair (X,Y) is M (respectively, W) – the copula for which each of X and Y is almost surely an increasing (respectively, decreasing) function of the other –, and C is any copula. We also study the distribution functions of M(X,Y) and W(X,Y) given that the joint distribution function of the random variables X and Y is any copula.

How to cite

top

Úbeda-Flores, Manuel. "Extreme distribution functions of copulas." Kybernetika 44.6 (2008): 817-825. <http://eudml.org/doc/33967>.

@article{Úbeda2008,
abstract = {In this paper we study some properties of the distribution function of the random variable C(X,Y) when the copula of the random pair (X,Y) is M (respectively, W) – the copula for which each of X and Y is almost surely an increasing (respectively, decreasing) function of the other –, and C is any copula. We also study the distribution functions of M(X,Y) and W(X,Y) given that the joint distribution function of the random variables X and Y is any copula.},
author = {Úbeda-Flores, Manuel},
journal = {Kybernetika},
keywords = {copula; diagonal section; distribution function; Lipschitz condition; opposite diagonal section; ordering; Spearman’s footrule; copula; diagonal section; distribution function; Lipschitz condition; opposite diagonal section; ordering; Spearman's footrule},
language = {eng},
number = {6},
pages = {817-825},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Extreme distribution functions of copulas},
url = {http://eudml.org/doc/33967},
volume = {44},
year = {2008},
}

TY - JOUR
AU - Úbeda-Flores, Manuel
TI - Extreme distribution functions of copulas
JO - Kybernetika
PY - 2008
PB - Institute of Information Theory and Automation AS CR
VL - 44
IS - 6
SP - 817
EP - 825
AB - In this paper we study some properties of the distribution function of the random variable C(X,Y) when the copula of the random pair (X,Y) is M (respectively, W) – the copula for which each of X and Y is almost surely an increasing (respectively, decreasing) function of the other –, and C is any copula. We also study the distribution functions of M(X,Y) and W(X,Y) given that the joint distribution function of the random variables X and Y is any copula.
LA - eng
KW - copula; diagonal section; distribution function; Lipschitz condition; opposite diagonal section; ordering; Spearman’s footrule; copula; diagonal section; distribution function; Lipschitz condition; opposite diagonal section; ordering; Spearman's footrule
UR - http://eudml.org/doc/33967
ER -

References

top
  1. Behboodian J., Dolati A., Úbeda-Flores M., Measures of association based on average quadrant dependence, J. Probab. Statist. Sci. 3 (2005), 161–173 
  2. Capérà P., Fougères A.-L., Genest C., A stochastic ordering based on a decomposition of Kendall’s tau, In: Distributions with Given Marginals and Moment Problems (V. Beneš and J. Štěpán, eds.), Kluwer, Dordrecht 1997, pp. 81–86 (1997) 
  3. Baets B. De, Meyer, H. De, Úbeda-Flores M., Constructing copulas with given diagonal and opposite diagonal sections, to appea 
  4. Durante F., Kolesárová A., Mesiar, R., Sempi C., 10.1142/S0218488507004753, Internat. J. Uncertain. Fuzziness Knowledge-Based Systems 15 (2007), 397–410 Zbl1158.62324MR2362234DOI10.1142/S0218488507004753
  5. Fredricks G. A., Nelsen R. B., Copulas constructed from diagonal sections, In: Distributions with Given Marginals and Moment Problems (V. Beneš and J. Štěpán, eds.), Kluwer Academic Publishers, Dordrecht 1997, pp. 129–136 (1997) Zbl0906.60022MR1614666
  6. Fredricks G. A., Nelsen R. B., The Bertino family of copulas, In: Distributions with Given Marginals and Statistical Modelling (C. Cuadras, J. Fortiana, and J. A. Rodríguez-Lallena, eds.), Kluwer Academic Publishers, Dordrecht 2002, pp. 81–91 Zbl1135.62334MR2058982
  7. Genest C., Rivest L.-P., 10.1016/S0167-7152(01)00047-5, Statist. Probab. Lett. 53 (2001), 391–399 Zbl0982.62056MR1856163DOI10.1016/S0167-7152(01)00047-5
  8. Gini C., L’Ammontare e la composizione della ricchezza delle nazione, Bocca Torino 1914 
  9. Mikusiński P., Sherwood, H., Taylor M. D., Shuffles of Min, Stochastica 13 (1992), 61–74 (1992) Zbl0768.60017MR1197328
  10. Nelsen R. B., 10.1080/10485259808832744, J. Nonparametric Statist. 9 (1998), 227–238 (1998) Zbl0919.62057MR1649514DOI10.1080/10485259808832744
  11. Nelsen R. B., An Introduction to Copulas, Second edition. Springer, New York 2006 Zbl1152.62030MR2197664
  12. Nelsen R. B., Quesada-Molina J. J., Rodríguez-Lallena J. A., Úbeda-Flores M., 10.1016/S0167-7152(01)00060-8, Statist. Probab. Lett. 54 (2001), 277–282 Zbl0992.60020MR1857942DOI10.1016/S0167-7152(01)00060-8
  13. Nelsen R. B., Quesada-Molina J. J., Rodríguez-Lallena J. A., Úbeda-Flores M., 10.1016/j.spl.2003.08.002, Statist. Probab. Lett. 65 (2003), 263–268 Zbl1183.60006MR2018039DOI10.1016/j.spl.2003.08.002
  14. Nelsen R. B., Quesada-Molina J. J., Rodríguez-Lallena J. A., Úbeda-Flores M., 10.1016/j.jmva.2003.09.002, J. Multivariate Anal. 90 (2004), 348–358 Zbl1057.62038MR2081783DOI10.1016/j.jmva.2003.09.002
  15. Nelsen R. B., Quesada-Molina J. J., Rodríguez-Lallena J. A., Úbeda-Flores M., 10.1016/j.insmatheco.2006.11.011, Insurance: Math. Econ. 42 (2008), 473–483 Zbl1152.60311MR2404309DOI10.1016/j.insmatheco.2006.11.011
  16. Nelsen R. B., Quesada-Molina J. J., Rodríguez-Lallena J. A., Úbeda-Flores M., Kendall distribution functions and associative copulas, Fuzzy Sets and Systems 160 (2009), 52–57 Zbl1183.60006MR2469430
  17. Sklar A., Fonctions de répartition à n dimensions et leurs marges, Publ. Inst. Statist. Univ. Paris 8 (1959), 229–231 (1959) MR0125600
  18. Sklar A., Random variables, joint distributions, and copulas, Kybernetika 9 (1973), 449–460 (1973) MR0345164
  19. Spearman C., ‘Footrule’ for measuring correlation, British J. Psychology 2 (1906), 89–108 (1906) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.