Extreme distribution functions of copulas
Kybernetika (2008)
- Volume: 44, Issue: 6, page 817-825
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topÚbeda-Flores, Manuel. "Extreme distribution functions of copulas." Kybernetika 44.6 (2008): 817-825. <http://eudml.org/doc/33967>.
@article{Úbeda2008,
abstract = {In this paper we study some properties of the distribution function of the random variable C(X,Y) when the copula of the random pair (X,Y) is M (respectively, W) – the copula for which each of X and Y is almost surely an increasing (respectively, decreasing) function of the other –, and C is any copula. We also study the distribution functions of M(X,Y) and W(X,Y) given that the joint distribution function of the random variables X and Y is any copula.},
author = {Úbeda-Flores, Manuel},
journal = {Kybernetika},
keywords = {copula; diagonal section; distribution function; Lipschitz condition; opposite diagonal section; ordering; Spearman’s footrule; copula; diagonal section; distribution function; Lipschitz condition; opposite diagonal section; ordering; Spearman's footrule},
language = {eng},
number = {6},
pages = {817-825},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Extreme distribution functions of copulas},
url = {http://eudml.org/doc/33967},
volume = {44},
year = {2008},
}
TY - JOUR
AU - Úbeda-Flores, Manuel
TI - Extreme distribution functions of copulas
JO - Kybernetika
PY - 2008
PB - Institute of Information Theory and Automation AS CR
VL - 44
IS - 6
SP - 817
EP - 825
AB - In this paper we study some properties of the distribution function of the random variable C(X,Y) when the copula of the random pair (X,Y) is M (respectively, W) – the copula for which each of X and Y is almost surely an increasing (respectively, decreasing) function of the other –, and C is any copula. We also study the distribution functions of M(X,Y) and W(X,Y) given that the joint distribution function of the random variables X and Y is any copula.
LA - eng
KW - copula; diagonal section; distribution function; Lipschitz condition; opposite diagonal section; ordering; Spearman’s footrule; copula; diagonal section; distribution function; Lipschitz condition; opposite diagonal section; ordering; Spearman's footrule
UR - http://eudml.org/doc/33967
ER -
References
top- Behboodian J., Dolati A., Úbeda-Flores M., Measures of association based on average quadrant dependence, J. Probab. Statist. Sci. 3 (2005), 161–173
- Capérà P., Fougères A.-L., Genest C., A stochastic ordering based on a decomposition of Kendall’s tau, In: Distributions with Given Marginals and Moment Problems (V. Beneš and J. Štěpán, eds.), Kluwer, Dordrecht 1997, pp. 81–86 (1997)
- Baets B. De, Meyer, H. De, Úbeda-Flores M., Constructing copulas with given diagonal and opposite diagonal sections, to appea
- Durante F., Kolesárová A., Mesiar, R., Sempi C., 10.1142/S0218488507004753, Internat. J. Uncertain. Fuzziness Knowledge-Based Systems 15 (2007), 397–410 Zbl1158.62324MR2362234DOI10.1142/S0218488507004753
- Fredricks G. A., Nelsen R. B., Copulas constructed from diagonal sections, In: Distributions with Given Marginals and Moment Problems (V. Beneš and J. Štěpán, eds.), Kluwer Academic Publishers, Dordrecht 1997, pp. 129–136 (1997) Zbl0906.60022MR1614666
- Fredricks G. A., Nelsen R. B., The Bertino family of copulas, In: Distributions with Given Marginals and Statistical Modelling (C. Cuadras, J. Fortiana, and J. A. Rodríguez-Lallena, eds.), Kluwer Academic Publishers, Dordrecht 2002, pp. 81–91 Zbl1135.62334MR2058982
- Genest C., Rivest L.-P., 10.1016/S0167-7152(01)00047-5, Statist. Probab. Lett. 53 (2001), 391–399 Zbl0982.62056MR1856163DOI10.1016/S0167-7152(01)00047-5
- Gini C., L’Ammontare e la composizione della ricchezza delle nazione, Bocca Torino 1914
- Mikusiński P., Sherwood, H., Taylor M. D., Shuffles of Min, Stochastica 13 (1992), 61–74 (1992) Zbl0768.60017MR1197328
- Nelsen R. B., 10.1080/10485259808832744, J. Nonparametric Statist. 9 (1998), 227–238 (1998) Zbl0919.62057MR1649514DOI10.1080/10485259808832744
- Nelsen R. B., An Introduction to Copulas, Second edition. Springer, New York 2006 Zbl1152.62030MR2197664
- Nelsen R. B., Quesada-Molina J. J., Rodríguez-Lallena J. A., Úbeda-Flores M., 10.1016/S0167-7152(01)00060-8, Statist. Probab. Lett. 54 (2001), 277–282 Zbl0992.60020MR1857942DOI10.1016/S0167-7152(01)00060-8
- Nelsen R. B., Quesada-Molina J. J., Rodríguez-Lallena J. A., Úbeda-Flores M., 10.1016/j.spl.2003.08.002, Statist. Probab. Lett. 65 (2003), 263–268 Zbl1183.60006MR2018039DOI10.1016/j.spl.2003.08.002
- Nelsen R. B., Quesada-Molina J. J., Rodríguez-Lallena J. A., Úbeda-Flores M., 10.1016/j.jmva.2003.09.002, J. Multivariate Anal. 90 (2004), 348–358 Zbl1057.62038MR2081783DOI10.1016/j.jmva.2003.09.002
- Nelsen R. B., Quesada-Molina J. J., Rodríguez-Lallena J. A., Úbeda-Flores M., 10.1016/j.insmatheco.2006.11.011, Insurance: Math. Econ. 42 (2008), 473–483 Zbl1152.60311MR2404309DOI10.1016/j.insmatheco.2006.11.011
- Nelsen R. B., Quesada-Molina J. J., Rodríguez-Lallena J. A., Úbeda-Flores M., Kendall distribution functions and associative copulas, Fuzzy Sets and Systems 160 (2009), 52–57 Zbl1183.60006MR2469430
- Sklar A., Fonctions de répartition à n dimensions et leurs marges, Publ. Inst. Statist. Univ. Paris 8 (1959), 229–231 (1959) MR0125600
- Sklar A., Random variables, joint distributions, and copulas, Kybernetika 9 (1973), 449–460 (1973) MR0345164
- Spearman C., ‘Footrule’ for measuring correlation, British J. Psychology 2 (1906), 89–108 (1906)
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.