Exact distribution under independence of the diagonal section of the empirical copula

Arturo Erdely; José M. González–Barrios

Kybernetika (2008)

  • Volume: 44, Issue: 6, page 826-845
  • ISSN: 0023-5954

Abstract

top
In this paper we analyze some properties of the empirical diagonal and we obtain its exact distribution under independence for the two and three- dimensional cases, but the ideas proposed in this paper can be carried out to higher dimensions. The results obtained are useful in designing a nonparametric test for independence, and therefore giving solution to an open problem proposed by Alsina, Frank and Schweizer [2].

How to cite

top

Erdely, Arturo, and González–Barrios, José M.. "Exact distribution under independence of the diagonal section of the empirical copula." Kybernetika 44.6 (2008): 826-845. <http://eudml.org/doc/33968>.

@article{Erdely2008,
abstract = {In this paper we analyze some properties of the empirical diagonal and we obtain its exact distribution under independence for the two and three- dimensional cases, but the ideas proposed in this paper can be carried out to higher dimensions. The results obtained are useful in designing a nonparametric test for independence, and therefore giving solution to an open problem proposed by Alsina, Frank and Schweizer [2].},
author = {Erdely, Arturo, González–Barrios, José M.},
journal = {Kybernetika},
keywords = {Archimedean copula; diagonal section; independence; Archimedean copula; diagonal section; independence},
language = {eng},
number = {6},
pages = {826-845},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Exact distribution under independence of the diagonal section of the empirical copula},
url = {http://eudml.org/doc/33968},
volume = {44},
year = {2008},
}

TY - JOUR
AU - Erdely, Arturo
AU - González–Barrios, José M.
TI - Exact distribution under independence of the diagonal section of the empirical copula
JO - Kybernetika
PY - 2008
PB - Institute of Information Theory and Automation AS CR
VL - 44
IS - 6
SP - 826
EP - 845
AB - In this paper we analyze some properties of the empirical diagonal and we obtain its exact distribution under independence for the two and three- dimensional cases, but the ideas proposed in this paper can be carried out to higher dimensions. The results obtained are useful in designing a nonparametric test for independence, and therefore giving solution to an open problem proposed by Alsina, Frank and Schweizer [2].
LA - eng
KW - Archimedean copula; diagonal section; independence; Archimedean copula; diagonal section; independence
UR - http://eudml.org/doc/33968
ER -

References

top
  1. Aguiló I., Suñer, J., Torrens J., 10.1016/j.fss.2007.10.004, Fuzzy Sets and Systems 159 (2008), 1658–1672 MR2419976DOI10.1016/j.fss.2007.10.004
  2. Alsina C., Frank M. J., Schweizer B., Associative Functions: Triangular Norms and Copulas, World Scientific Publishing Co., Singapore 2006 Zbl1100.39023MR2222258
  3. Bailey D. F., Counting arrangements of 1’s and - 1 ’s, Math. Mag. 69 (1996), 128–131 (1996) Zbl0859.05007MR1573156
  4. Barcucci E., Verri M. C., 10.1016/0012-365X(92)90117-X, Discrete Math. 102 (1992), 229–237 (1992) Zbl0757.05005MR1169143DOI10.1016/0012-365X(92)90117-X
  5. Callan D., Some bijections and identities for the Catalan and Fine numbers, Séminaire Lotharingen de Combinatoire 53 (2006), B53e (16 pp) Zbl1084.05002MR2221363
  6. Cameron N. T., Random Walks, Trees and Extensions of Riordan Group Techniques, Ph.D. Thesis. Howard University 2002 MR2703896
  7. Chung K. L., Feller W., 10.1073/pnas.35.10.605, Proc. Nat. Acad. Sci. U. S. A. 35 (1949), 605–608 (1949) MR0033459DOI10.1073/pnas.35.10.605
  8. Darsow W. F., Frank M. J., Associative functions and Abel–Schröder systems, Publ. Math. Debrecen 30 (1983), 253–272 (1983) Zbl0542.39001MR0739487
  9. Deheuvels P., La fonction de dépendance empirique et ses propriétés, Un test non paramétrique d’indépendance. Acad. Roy. Belg. Bull. Cl. Sci. 65 (1979), 5, 274–292 (1979) Zbl0422.62037MR0573609
  10. Engleberg E. O., 10.2307/3212201, J. Appl. Probab. 2 (1965), 396–404 (1965) MR0182993DOI10.2307/3212201
  11. Erdely A., Diagonal Properties of the Empirical Copula and Applications, Construction of Families of Copulas with Given Restrictions. Ph.D. Thesis, Universidad Nacional Autónoma de México 2007 
  12. Feller W., An Introduction to Probability Theory and Its Applications, Vol, 1. Third edition. Wiley, New York 1968 Zbl0598.60003MR0228020
  13. Frank M. J., Diagonals of copulas and Schröder’s equation, Aequationes Math. 51 (1996), 150 (1996) MR1144584
  14. Kimberling C. H., 10.1007/BF01832852, Aequationes Math. 10 (1974), 152–164 (1974) Zbl0309.60012MR0353416DOI10.1007/BF01832852
  15. Klement E. P., Mesiar, R., Pap E., Triangular Norms, Kluwer Academic Publishers, Dordrecht 2000 Zbl1087.20041MR1790096
  16. Klement E. P., Mesiar R., Logical, Algebraic, Analytic, and Probabilistic Aspects of Triangular Norms, Elsevier, Amsterdam 2005 Zbl1063.03003MR2166082
  17. Kolesárová A., Mesiar R., Mordelová, J., Sempi C., 10.1109/TFUZZ.2006.880003, IEEE Trans. Fuzzy Systems 14 (2006), 698–705 DOI10.1109/TFUZZ.2006.880003
  18. Kolesárová A., Mordelová J., 10.1007/s00500-005-0524-6, Soft Computing 10 (2006), 495–501 Zbl1096.60012DOI10.1007/s00500-005-0524-6
  19. Kuczma M., Functional Equations in a Single Variable, Polish Scientific Publishers, Warsaw 1968 Zbl0725.39003MR0228862
  20. Kuczma M., Choczewski, B., Ger R., Iterative Functional Equations, Cambridge University Press, New York 1990 Zbl1141.39023MR1067720
  21. Mayor G., Suner, J., Torrens J., 10.1109/TFUZZ.2004.840129, IEEE Trans. Fuzzy Systems 13 (2005), 468–477 DOI10.1109/TFUZZ.2004.840129
  22. McNeil A. J., Nešlehová J., Multivariate Archimedean copulas, D -monotone functions and l 1 -norm symmetric distributions, Ann. Statist, to appear MR2541455
  23. Mesiar R., Discrete copulas – what they are, In: Joint EUSFLAT-LFA 2005, Conference Proc. (E. Montsenyand P. Sobrevilla, eds.) Universitat Politecnica de Catalunya, Barcelona 2005, pp. 927–930 
  24. Nelsen R. B., An Introduction to Copulas, Second edition. Springer, New York 2006 Zbl1152.62030MR2197664
  25. Schweizer B., Sklar A., Probabilistic Metric Spaces, North-Holland, New York 1983 Zbl0546.60010MR0790314
  26. Sklar A., Fonctions de répartition à n dimensions et leurs marges, Publ. Inst. Statist. Univ. Paris 8 (1959), 229–231 (1959) MR0125600
  27. Sungur E. A., Yang Y., 10.1080/03610929608831791, Comm. Statist. Theory Methods 25 (1996), 1659–1676 (1996) Zbl0900.62339MR1411104DOI10.1080/03610929608831791

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.