Pure powers and power classes in recurrence sequences

Péter Kiss

Mathematica Slovaca (1994)

  • Volume: 44, Issue: 5, page 525-529
  • ISSN: 0232-0525

How to cite

top

Kiss, Péter. "Pure powers and power classes in recurrence sequences." Mathematica Slovaca 44.5 (1994): 525-529. <http://eudml.org/doc/34396>.

@article{Kiss1994,
author = {Kiss, Péter},
journal = {Mathematica Slovaca},
keywords = {linear recurrence sequences; linear forms in logarithms of algebraic numbers; pure powers},
language = {eng},
number = {5},
pages = {525-529},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {Pure powers and power classes in recurrence sequences},
url = {http://eudml.org/doc/34396},
volume = {44},
year = {1994},
}

TY - JOUR
AU - Kiss, Péter
TI - Pure powers and power classes in recurrence sequences
JO - Mathematica Slovaca
PY - 1994
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 44
IS - 5
SP - 525
EP - 529
LA - eng
KW - linear recurrence sequences; linear forms in logarithms of algebraic numbers; pure powers
UR - http://eudml.org/doc/34396
ER -

References

top
  1. BAKER A., A sharpening of the bounds for linear forms in logarithms II, Acta Arith. 24 (1973), 33-36. (1973) Zbl0261.10025MR0376549
  2. COHN J. H. E., On souare Fibonacci numbers, J. London Math. Soc. 39 (1964), 537-540. (1964) MR0163867
  3. COHN J. H. E., Squares in some recurrent sequences, Pacific J. Math. 41 (1972), 631-646. (1972) Zbl0248.10016MR0316367
  4. COHN J. H. E., Eight Diophantine equations, Proc. London Math. Soc. 16 (1966), 153-166. (1966) Zbl0136.02806MR0190078
  5. COHN J. H. E., Five Diophatine equations, Math. Scand. 21 (1967), 61-70. (1967) MR0236103
  6. KISS P., Differences of the terms of linear recurrences, Studia Sci. Math. Hungar. 20 (1985), 285-293. (1985) Zbl0628.10008MR0886031
  7. LJUNGGREN W., Zur Theorie der Gleichung x 2 + 1 = D y 4, Avh. Norske Vid Akad. Oslo. 5 (1942). (1942) MR0016375
  8. LONDON J.-FINKELSTEIN R., On Fibonacci and Lucas numbers which are perfect powers, Fibonacci Quart. 7 (1969), 476-481, 487 (Errata ibid 8 (1970), 248). (1969) Zbl0206.05402MR0255482
  9. LONDON J.-FINKELSTEIN R., On Mordell’s Equation y 2 - k = x 3 , Bowling Green University Press, 1973. (1973) 
  10. McDANIEL W. L.-RIBENBOIM P., Squares and double-squares in Lucas sequences, C.R. Math. Rep. Acad. Sci. Canada. 14 (1992), 104-108. (1992) Zbl0771.11012MR1167065
  11. PETHO A., Full cubes in the Fibonacci sequence, Publ. Math. Debrecen. 30 (1983), 117-127. (1983) MR0733078
  12. PETHO A., The Pell sequence contains only trivial perfect powers, In: Sets, Graphs and Numbers. Colloq. Math. Soc. Janos Bolyai 60, North-Holland, Amsterdam-New York, 1991, pp. 561-568. (1991) MR1218218
  13. PETHO A., Perfect powers in second order linear recurrences, J. Number Theory, 15 (1982), 5-13. (1982) MR0666345
  14. PETHO A., Perfect powers in second order recurrences, In: Topics in Classical Number Theory, Akademiai Kiado, Budapest, 1981, pp. 1217-1227. (1981) MR0781182
  15. RIBENBOIM P., Square classes of Fibonacci and Lucas numbers, Portugal. Math. 46 (1989), 159-175. (1989) Zbl0687.10005MR1020964
  16. RIBENBOIM P., McDANIEL W. L., Square classes of Fibonacci and Lucas sequences, Portugal. Math. 48 (1991), 469-473. (1991) MR1147611
  17. RIBENBOIM P., Square classes of ( a n - l ) / ( a - 1 ) and a n + 1 , Sichuan Daxue Xunebar, 26 (1989), 196-199. (1989) MR1059704
  18. ROBBINS N., On Fibonacci numbers of the form P X 2 , where P is prime, Fibonacci Quart. 21 (1983), 266-271. (1983) MR0723787
  19. ROBBINS N., On Pell numbers of the form P X 2 , where P is prime, Fibonacci Quart. 22 (1984), 340-348. (1984) MR0766310
  20. SHOREY T. N., STEWART C. L., On the Diophantine equation a x 2 t + b x t y + c y 2 = d and pure powers in recurrence sequences, Math. Scand. 52 (1983), 24-36. (1983) MR0697495
  21. SHOREY T. N., STEWART C. L., Pure powers in recurrence sequences and some related Diophatine equations, J. Number Theory 27 (1987), 324-352. (1987) MR0915504
  22. WYLIE O., In the Fibonacci series F 1 = 1 , F 2 = 1 , F n + 1 = F n + F n - 1 the first, second and twelfth terms are squares, Amer. Math. Monthly 71 (1964), 220-222. (1964) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.