Approximate counting via Euler transform
Mathematica Slovaca (1994)
- Volume: 44, Issue: 5, page 569-574
- ISSN: 0139-9918
Access Full Article
topHow to cite
topProdinger, Helmut. "Approximate counting via Euler transform." Mathematica Slovaca 44.5 (1994): 569-574. <http://eudml.org/doc/34399>.
@article{Prodinger1994,
author = {Prodinger, Helmut},
journal = {Mathematica Slovaca},
keywords = {Euler transformation; basic hypergeometric functions; approximate counting; -analysis; expectation; second factorial moment},
language = {eng},
number = {5},
pages = {569-574},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {Approximate counting via Euler transform},
url = {http://eudml.org/doc/34399},
volume = {44},
year = {1994},
}
TY - JOUR
AU - Prodinger, Helmut
TI - Approximate counting via Euler transform
JO - Mathematica Slovaca
PY - 1994
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 44
IS - 5
SP - 569
EP - 574
LA - eng
KW - Euler transformation; basic hypergeometric functions; approximate counting; -analysis; expectation; second factorial moment
UR - http://eudml.org/doc/34399
ER -
References
top- ANDREWS G. E., The Theory of Partitions, Addison Wesley, 1976. (1976) Zbl0371.10001MR0557013
- FLAJOLET P., Approximate counting: A detailed analysis, BIT 25 (1985), 113-134. (1985) Zbl0562.68027MR0785808
- FLAJOLET P., LABELLE G., LAFOREST L., SALVY B., Hypergeometrics and the cost structure of quadtrees, Random Structures and Algorithms (1995) (To appear). (1995) Zbl0834.68013MR1369059
- FLAJOLET P., RICHMOND B., Generalized digital trees and their difference-differential equations, Random Structures and Algorithms 5 (1992), 305-320. (1992) Zbl0758.60015MR1164843
- KIRSCHENHOFER P., PRODINGER H., Approximate counting: An alternative approach, RAIRO Informatique Theorique et Applications 25 (1991), 43-48. (1991) Zbl0732.68052MR1104410
- KIRSCHENHOFER P., PRODINGER H., A coin tossing algorithm for counting large numbers of events, Math. Slovaca 42 (1992), 531-545. (1992) Zbl0764.68077MR1202172
- PRODINGER H., Hypothetic analyses: Approximate counting in the style of Knuth, path length in the style of Flajolet, Theoretical Computer Science 100 (1992), 243-251. (1992) MR1171442
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.