The irregularity strength of generalized Petersen graphs

Stanislav Jendroľ; Vladimír Žoldák

Mathematica Slovaca (1995)

  • Volume: 45, Issue: 2, page 107-113
  • ISSN: 0232-0525

How to cite

top

Jendroľ, Stanislav, and Žoldák, Vladimír. "The irregularity strength of generalized Petersen graphs." Mathematica Slovaca 45.2 (1995): 107-113. <http://eudml.org/doc/34407>.

@article{Jendroľ1995,
author = {Jendroľ, Stanislav, Žoldák, Vladimír},
journal = {Mathematica Slovaca},
keywords = {weight; irregularity strength; generalized Petersen graphs},
language = {eng},
number = {2},
pages = {107-113},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {The irregularity strength of generalized Petersen graphs},
url = {http://eudml.org/doc/34407},
volume = {45},
year = {1995},
}

TY - JOUR
AU - Jendroľ, Stanislav
AU - Žoldák, Vladimír
TI - The irregularity strength of generalized Petersen graphs
JO - Mathematica Slovaca
PY - 1995
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 45
IS - 2
SP - 107
EP - 113
LA - eng
KW - weight; irregularity strength; generalized Petersen graphs
UR - http://eudml.org/doc/34407
ER -

References

top
  1. CHARTRAND G., JACOBSON M. S., LEHEL J., OELLERMANN O. R., RUIZ S., SABA F., Irregular networks, Congr. Numer. 64 (1988), 184-192. (1988) MR0988682
  2. DINITZ J. H., GARNICK D. K., GYÁRFÁS A., On the irregularity strength of the m x n grid, J. Graph Theory 16 (1992), 355-374. (1992) MR1174459
  3. EBERT G., HEMMETER J., LAZEBNIK F., WOLDAR A., Irregularity strengths of certain graphs, Congr. Numer. 71 (1990), 39-52. (1990) MR1041614
  4. FAUDREE R. J., JACOBSON M. S., KINCH L., LEHEL J., Irregularity strength of dense graphs, Discrete Math. 91 (1991), 45-59. (1991) Zbl0755.05092MR1120886
  5. FAUDREE R. J., LEHEL J., Bound on the irregularity strength of regular graphs, In: Combinatorics. Colloq. Math. Soc. János Bolyai 52, Eger, 1987, pp. 247-256. (1987) MR1221563
  6. GYÁRFÁS A., The irregularity strength of K m , n is 4 for odd m , Discrete Math. 71 (1988), 273-274. (1988) MR0959011
  7. GYÁRFÁS A., The irregularity strength of K n - m K 2 , Utilitas Math. 35 (1989), 111-114. (1989) MR0992395
  8. KINCH L., LEHEL J., The irregularity strength of t P 3 , Discrete Math. 94 (1991), 75-79. (1991) MR1141057
  9. LEHEL J., Facts and quests on degree irregular assignments, In: Graph Theory, Combinatorics and Applications, J. Wiley Sons, New York, 1991, pp. 765-782. (1991) Zbl0841.05052MR1170823
  10. McQUILLAN D., RICHTER R. B., On the crossing numbers of certain generalized Petersen graphs, Discrete Math. 104 (1992), 311-320. (1992) Zbl0756.05048MR1171327
  11. NEDELA R., ŠKOVIERA M., Which generalized Petersen graphs are Cayley graphs?, J. Graph Theory (Submitted). Zbl0812.05026MR1315420
  12. SCHWENK A. J., Enumeration of Hamiltonian cycles in certain generalized Petersen graphs, J. Combin. Theory Ser. B 47 (1989), 53-59. (1989) Zbl0626.05038MR1007713
  13. WATKINS M. E., A theorem on Tait colorings with an application to generalized Petersen graphs, J. Combin. Theory 6 (1969), 152-164. (1969) MR0236062

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.