Metric properties of Engel series expansions of Laurent series

Peter J. Grabner; Arnold Knopfmacher

Mathematica Slovaca (1998)

  • Volume: 48, Issue: 3, page 233-243
  • ISSN: 0232-0525

How to cite

top

Grabner, Peter J., and Knopfmacher, Arnold. "Metric properties of Engel series expansions of Laurent series." Mathematica Slovaca 48.3 (1998): 233-243. <http://eudml.org/doc/34474>.

@article{Grabner1998,
author = {Grabner, Peter J., Knopfmacher, Arnold},
journal = {Mathematica Slovaca},
keywords = {Engel series; Laurent series; finite field; metric result},
language = {eng},
number = {3},
pages = {233-243},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {Metric properties of Engel series expansions of Laurent series},
url = {http://eudml.org/doc/34474},
volume = {48},
year = {1998},
}

TY - JOUR
AU - Grabner, Peter J.
AU - Knopfmacher, Arnold
TI - Metric properties of Engel series expansions of Laurent series
JO - Mathematica Slovaca
PY - 1998
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 48
IS - 3
SP - 233
EP - 243
LA - eng
KW - Engel series; Laurent series; finite field; metric result
UR - http://eudml.org/doc/34474
ER -

References

top
  1. ARTIN E., Quadratische Korper in Gebiete der hoheren Kongruenzen, I-II, Math. Z. 19 (1924), 153-246. (1924) MR1544651
  2. ERDOS P.-RÉNYI A.-SZUSZ P., On Engel's and Sylvester's series, Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 1 (1958), 7-12. (1958) MR0102496
  3. FELLER W., An Introduction to Probability Theory and its Applications, Vol. 1, (3rd ed.), J. Wiley, New York, 1968. (1968) MR0228020
  4. FELLER W., An Introduction to Probability Theory and its Applications, Vol. 2, J. Wiley, New York, 1966. (1966) MR0210154
  5. GALAMBOS J., Representations of Real Numbers by Infinite Series, Springer-Verlag, Berlin-Heidelberg-New York, 1976. (1976) Zbl0322.10002MR0568141
  6. JONES W. B.-THRON W. J., Continued Fractions, Addison-Wesley, London-Amsterdam-Don Mills-Sydney-Tokyo, 1980. (1980) Zbl0603.30009MR0595864
  7. KHINTCHINE A. Y., Metrische Kettenbruchprobleme, Compositio Math. 1 (1935), 361-382. (1935) Zbl0010.34101MR1556899
  8. KNOPFMACHER A.-KNOPFMACHER J., Inverse polynomial expansions of Laurent series, I-II, Constr. Approx. 4 (1988), 379-389; J. Comput. Appl. Math. 28 (1989), 249-257. (1988) MR0956174
  9. KNOPFMACHER A.-KNOPFMACHER J., Metric properties of algorithms inducing Lüroth series expansions of Laurent series, Asterisque 209 (1992), 237-246. (1992) Zbl0788.11031MR1211017
  10. KNOPFMACHER J., Ergodic properties of some inverse polynomial series expansions of Laurent series, Acta Math. Hungar. 60 (1992), 241-246. (1992) Zbl0774.11073MR1177678
  11. MAGNUS A., Certain continued fractions associated with the Padé table, Math. Z. 78 (1962), 361-374. (1962) Zbl0104.05102MR0150271
  12. MAGNUS A., p-fractions and the Pade table, Rocky Mountain J. Math. 4 (1974), 257-259. (1974) Zbl0293.41016MR0342915
  13. PAYSANT-LEROUX R.-DUBOIS E., Algorithme de Jacobi-Perron dans un corps de séries formelles, C. R. Acad. Sci. Paris Ser. A 272 (1971), 564-566. (1971) MR0285481
  14. PAYSANT-LEROUX R.-DUBOIS E., Étude metrique de l'algorithme de Jacobi-Perron dan un corps dé series formelles, C. R. Acad. Sci. Paris Sér. A 275 (1972), 683-686. (1972) MR0311582
  15. PERRON O., Irrationalzahlen, W. de Gruyter, Berlin, 1939. (1939) Zbl0022.12306MR0115985
  16. RENYI A., A new approach to the theory of Engel's series, Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 5 (1962), 25-32. (1962) MR0150123

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.