Specht modules for finite groups

Sait Halicioğlu

Mathematica Slovaca (1999)

  • Volume: 49, Issue: 4, page 425-431
  • ISSN: 0139-9918

How to cite

top

Halicioğlu, Sait. "Specht modules for finite groups." Mathematica Slovaca 49.4 (1999): 425-431. <http://eudml.org/doc/34500>.

@article{Halicioğlu1999,
author = {Halicioğlu, Sait},
journal = {Mathematica Slovaca},
keywords = {Specht modules; tableaux; tabloids; finite groups; irreducible representations},
language = {eng},
number = {4},
pages = {425-431},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {Specht modules for finite groups},
url = {http://eudml.org/doc/34500},
volume = {49},
year = {1999},
}

TY - JOUR
AU - Halicioğlu, Sait
TI - Specht modules for finite groups
JO - Mathematica Slovaca
PY - 1999
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 49
IS - 4
SP - 425
EP - 431
LA - eng
KW - Specht modules; tableaux; tabloids; finite groups; irreducible representations
UR - http://eudml.org/doc/34500
ER -

References

top
  1. AL-AAMILY E.-MORRIS A. O.-PEEL M. H., The representations of the Weyl groups of type Bn, J. Algebra 68 (1981), 298-305. (1981) MR0608537
  2. CURTIS C. W.-REINER I., Representation Theory of Finite Groups and Associative Algebras, Interscience Publishers, New York, 1962. (1962) Zbl0131.25601MR0144979
  3. HALICIOGLU S.-MORRIS A. O., Specht modules for Weyl groups, Beiträge Algebra Geom. 34 (1993), 257-276. (1993) Zbl0820.20013MR1264294
  4. HALICIOGLU S., Specht modules for finite reflection groups, Glasgow Math. J. 37 (1995), 279-287. (1995) Zbl0841.20017MR1355384
  5. JAMES G. D.-KERBER A., The Representation Theory of the Symmetric Group, Addison-Wesley Publishing Company, London, 1981. (1981) Zbl0491.20010MR0644144
  6. MORRIS A. O., Representations of Weyl groups over an arbitrary field, Astérisque 87-88 (1981), 267-287. (1981) Zbl0492.20008MR0646824

NotesEmbed ?

top

You must be logged in to post comments.