Wilson's theorem in algebraic number fields
Mathematica Slovaca (2000)
- Volume: 50, Issue: 3, page 303-314
- ISSN: 0139-9918
Access Full Article
topHow to cite
topLašák, Miroslav. "Wilson's theorem in algebraic number fields." Mathematica Slovaca 50.3 (2000): 303-314. <http://eudml.org/doc/34516>.
@article{Lašák2000,
author = {Lašák, Miroslav},
journal = {Mathematica Slovaca},
keywords = {idempotents; semigroup belonging to an idempotent; group of units; Wilson's theorem; finite commutative rings; algebraic number fields},
language = {eng},
number = {3},
pages = {303-314},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {Wilson's theorem in algebraic number fields},
url = {http://eudml.org/doc/34516},
volume = {50},
year = {2000},
}
TY - JOUR
AU - Lašák, Miroslav
TI - Wilson's theorem in algebraic number fields
JO - Mathematica Slovaca
PY - 2000
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 50
IS - 3
SP - 303
EP - 314
LA - eng
KW - idempotents; semigroup belonging to an idempotent; group of units; Wilson's theorem; finite commutative rings; algebraic number fields
UR - http://eudml.org/doc/34516
ER -
References
top- DICKSON L. E., History of the Theory of Numbers, Vol I., Carnegie Institute, Washington, 1919. (1919)
- LAŠŠÁK M.-PORUBSKÝ Š., Fermat-Euler theorem in algebraic number fìelds, J. Number Theory 60 (1996), 254-290. (1996) Zbl0877.11069MR1412963
- NAKAGOSHI N., The structure of the multiplicative group of residue classes modulo , Nagoya Math. J. 73 (1979), 41-60. (1979) MR0524007
- NARKIEWICZ W., Elementary and Analytic Theory of Algebraic Numbers, (2nd ed.), PWN, Warsaw, 1990. (1990) Zbl0717.11045MR1055830
- SCHWARZ Š., The role of semigroups in the elementary theory of numbers, Math. Slovaca 31 (1981), 369-395. (1981) Zbl0474.10002MR0637966
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.