# Wilson's theorem in algebraic number fields

Mathematica Slovaca (2000)

- Volume: 50, Issue: 3, page 303-314
- ISSN: 0139-9918

## Access Full Article

top## How to cite

topLašák, Miroslav. "Wilson's theorem in algebraic number fields." Mathematica Slovaca 50.3 (2000): 303-314. <http://eudml.org/doc/34516>.

@article{Lašák2000,

author = {Lašák, Miroslav},

journal = {Mathematica Slovaca},

keywords = {idempotents; semigroup belonging to an idempotent; group of units; Wilson's theorem; finite commutative rings; algebraic number fields},

language = {eng},

number = {3},

pages = {303-314},

publisher = {Mathematical Institute of the Slovak Academy of Sciences},

title = {Wilson's theorem in algebraic number fields},

url = {http://eudml.org/doc/34516},

volume = {50},

year = {2000},

}

TY - JOUR

AU - Lašák, Miroslav

TI - Wilson's theorem in algebraic number fields

JO - Mathematica Slovaca

PY - 2000

PB - Mathematical Institute of the Slovak Academy of Sciences

VL - 50

IS - 3

SP - 303

EP - 314

LA - eng

KW - idempotents; semigroup belonging to an idempotent; group of units; Wilson's theorem; finite commutative rings; algebraic number fields

UR - http://eudml.org/doc/34516

ER -

## References

top- DICKSON L. E., History of the Theory of Numbers, Vol I., Carnegie Institute, Washington, 1919. (1919)
- LAŠŠÁK M.-PORUBSKÝ Š., Fermat-Euler theorem in algebraic number fìelds, J. Number Theory 60 (1996), 254-290. (1996) Zbl0877.11069MR1412963
- NAKAGOSHI N., The structure of the multiplicative group of residue classes modulo ${\frac{P}{}}_{N+1}$, Nagoya Math. J. 73 (1979), 41-60. (1979) MR0524007
- NARKIEWICZ W., Elementary and Analytic Theory of Algebraic Numbers, (2nd ed.), PWN, Warsaw, 1990. (1990) Zbl0717.11045MR1055830
- SCHWARZ Š., The role of semigroups in the elementary theory of numbers, Math. Slovaca 31 (1981), 369-395. (1981) Zbl0474.10002MR0637966

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.