Minimal models of oriented Grassmannians and applications

Goutam Mukherjee; Parameswaran Sankaran

Mathematica Slovaca (2000)

  • Volume: 50, Issue: 5, page 567-579
  • ISSN: 0139-9918

How to cite

top

Mukherjee, Goutam, and Sankaran, Parameswaran. "Minimal models of oriented Grassmannians and applications." Mathematica Slovaca 50.5 (2000): 567-579. <http://eudml.org/doc/34525>.

@article{Mukherjee2000,
author = {Mukherjee, Goutam, Sankaran, Parameswaran},
journal = {Mathematica Slovaca},
keywords = {Grassmann manifold; flag manifold; rational homotopy theory; minimal model; formality; nilpotence},
language = {eng},
number = {5},
pages = {567-579},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {Minimal models of oriented Grassmannians and applications},
url = {http://eudml.org/doc/34525},
volume = {50},
year = {2000},
}

TY - JOUR
AU - Mukherjee, Goutam
AU - Sankaran, Parameswaran
TI - Minimal models of oriented Grassmannians and applications
JO - Mathematica Slovaca
PY - 2000
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 50
IS - 5
SP - 567
EP - 579
LA - eng
KW - Grassmann manifold; flag manifold; rational homotopy theory; minimal model; formality; nilpotence
UR - http://eudml.org/doc/34525
ER -

References

top
  1. ALLDAY C.-PUPPE V., Cohomological Methods in Transformation Groups, Cambridge Stud. Adv. Math. 32, Cambridge Univ. Press, Cambridge, 1993. (1993) Zbl0799.55001MR1236839
  2. BOREL A., Sur la cohomologie des espaces principaux et des espace homogènes de groups de Lie compacts, Ann. of Math. (2) 57 (1953), 115-207. (1953) MR0051508
  3. BOTT R.-TU L., Differential Forms in Algebraic Topology, Grad. Texts in Math. 82, Springer-Verlag, New York, 1982. (1982) Zbl0496.55001MR0658304
  4. BOUSFIELD A. K.-GUGENHEIM V. K. A. M., On PL de Rham theory and rational homotopy type, Mem. Amer. Math. Soc. 179 (1976). (1976) Zbl0338.55008MR0425956
  5. DELIGNE P.-GRIFFITHS P.-MORGAN J.-SULLIVAN D., Real homotopy theory of Kähler manifolds, Invent. Math. 29 (1975), 245-274. (1975) Zbl0312.55011MR0382702
  6. GLOVER H., HOMER W., Equivariant immersions of flag manifolds, Indiana Univ. Math. J. 28 (1979), 953-956. (1979) MR0551158
  7. GREUB W.-HALPERIN S.-VANSTONE R., Connections, Curvature, and Cohomology, Vol. III, Academic Press, New York, 1976. (1976) Zbl0372.57001MR0400275
  8. GRIFFITHS P.-MORGAN J., Rational Homotopy Theory and Differential Forms, Birkhäuser, Basel, 1981. (1981) Zbl0474.55001MR0641551
  9. HELGASON S., Differential Geometry, Lie Groups, and Symmetic Spaces, Academic Press, New York, 1978. (1978) MR0514561
  10. HILTON P., Nilpotente Gruppen und nilpotente Raume, Lecture Notes in Math. 1053, Springer Verlag, New York, 1986. (1986) MR0764045
  11. LANG S., Algebra, (Зrd ed.), Addison-Wesley, Reading, Mass., 1993. (1993) Zbl0848.13001MR0197234
  12. MILNOR J.-STASHEFF J., Characteristic Classes, Ann. of Math. Stud. 76, Princeton Univ Press, Princeton, NJ, 1974. (1974) Zbl0298.57008MR0440554
  13. ROITBERG J., Note on nilpotent spaces and localization, Math. Z. 137 (1974), 67-74. (1974) Zbl0283.55007MR0346782
  14. SPANIER E., Algebraic Topology, Springer-Verlag, New York, 1979. (1979) MR0666554
  15. SULLIVAN D., Infinitesimal computations in topology, Publ. Math., Inst. Hautes Etud. Sci. 47 (1977), 269-331. (1977) Zbl0374.57002MR0646078
  16. TRALLE A.-OPREA J., Symplectic Manifolds with no Kähler Structure, Lecture Notes in Math. 1661, Springer Verlag, New York. Zbl0891.53001MR1465676
  17. VARADARAJAN K., Nilpotent actions and nilpotent spaces, 1976 (Unpublished). 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.