Convex mappings of archimedean MV-algebras

Ján Jakubík

Mathematica Slovaca (2001)

  • Volume: 51, Issue: 4, page 383-391
  • ISSN: 0139-9918

How to cite

top

Jakubík, Ján. "Convex mappings of archimedean MV-algebras." Mathematica Slovaca 51.4 (2001): 383-391. <http://eudml.org/doc/34542>.

@article{Jakubík2001,
author = {Jakubík, Ján},
journal = {Mathematica Slovaca},
keywords = {MV-algebra; Cantor-Bernstein theorem; maximal completion},
language = {eng},
number = {4},
pages = {383-391},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {Convex mappings of archimedean MV-algebras},
url = {http://eudml.org/doc/34542},
volume = {51},
year = {2001},
}

TY - JOUR
AU - Jakubík, Ján
TI - Convex mappings of archimedean MV-algebras
JO - Mathematica Slovaca
PY - 2001
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 51
IS - 4
SP - 383
EP - 391
LA - eng
KW - MV-algebra; Cantor-Bernstein theorem; maximal completion
UR - http://eudml.org/doc/34542
ER -

References

top
  1. CHANG C. C., Algebraic analysis of many valued logics, Trans. Amer. Math. Soc. 88 (1958), 467-490. (1958) Zbl0084.00704MR0094302
  2. CIGNOLI R.-D'OTTAVIANO I. M. L.-MUNDICI D., Algebraic Foundations of Many-Valued Reasoning, Trends in Logic - Studia Logica Library Vol. 7, Kluwer Acadеmic Publishеrs, Dordrеcht, 2000. Zbl0937.06009MR1786097
  3. CONRAD P., Lattice Ordered Groups, Math. Rеs. Library IV, Tulanе Univеrsity, Nеw Orlеans, 1970. (1970) Zbl0258.06011
  4. DARNEL M. R., Theory of Lattice-Ordered Groups, M. Dеkkеr, Nеw York-Basel-Hong Kong, 1995. (1995) Zbl0810.06016MR1304052
  5. DVUREČENSKIJ A.-PULМANNOVÁ S., New Trends in Quantum Structures, Kluwer Acad. Publ., Dordrecht, 2000. Zbl0987.81005
  6. GLUSCHANKOV D., Cyclic ordered groups and M V -algebras, Czechoslovak Math. J. 43 (1993), 249-263. (1993) MR1211747
  7. JAKUBÍK J., Cantor-Bernstein theorem for lattice ordered groups, Czechoslovak Math. J. 22 (1972), 159-175. (1972) Zbl0243.06009MR0297666
  8. JAKUBÍK J., Sequential convergences on M V -algebras, Czechoslovak Math. J. 45 (1995), 709-726. (1995) Zbl0845.06009MR1354928
  9. JAKUBÍK J., On complete lattice ordered groups with strong units, Czechoslovak Math. J. 46 (1996), 221-230. (1996) Zbl0870.06014MR1388611
  10. JAKUBÍK J., On archimedean M V -algebras, Czechoslovak Math. J. 48 (1998), 575-582. (1998) Zbl0951.06011MR1637871
  11. JAKUBÍK J., Complete generators and maximal completions of M V -algebras, Czechoslovak Math. J. 48 (1998), 597-608. (1998) Zbl0951.06010MR1637863
  12. JAKUBÍK J., Cantor-Bernstein theorem for M V -algebras, Czechoslovak Math. J. 49 (1999), 517-526. (1999) Zbl1004.06011MR1708370
  13. JAKUBIK J., Convex isomorphisms of archimedean lattice ordered groups, Mathware Soft Comput. 5 (1998), 49-56. (1998) Zbl0942.06008MR1632739
  14. MUNDICI D., Interpretation of A F C * -algebras in Łukasiewicz sentential calculus, J. Funct. Anal. 65 (1986), 15-63. (1986) MR0819173
  15. SCHMIDT J., Zur Kennzeichnung der Dedekind - Mac Neilleschen Hülle einer geordneten Menge, Arch. Math. (Basel) 7 (1956), 241-249. (1956) MR0084484
  16. SIKORSKI R., A generalization of theorem of Banach and Cantor-Bernstein, Colloq. Math. 1 (1948), 140-144. (1948) MR0027264
  17. SIKORSKI R., Boolean Algebras, (2nd ed.), Springer Verlag, Berlin, 1964. (1964) Zbl0123.01303MR0126393
  18. SIMONE A. DE-MUNDICI D.-NAVARA M., A Cantor-Bernstein theorem for a complete M V -algebras, Preprint. 
  19. TARSKI A., Cardinal Algebras, Oxford University Press, New York-London, 1949. (1949) Zbl0041.34502MR0029954

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.