Weak compactness of unconditionally convergent operators on C 0 ( T )

Thiruvaiyaru V. Panchapagesan

Mathematica Slovaca (2002)

  • Volume: 52, Issue: 1, page 57-66
  • ISSN: 0139-9918

How to cite

top

Panchapagesan, Thiruvaiyaru V.. "Weak compactness of unconditionally convergent operators on $C_0(T)$." Mathematica Slovaca 52.1 (2002): 57-66. <http://eudml.org/doc/34548>.

@article{Panchapagesan2002,
author = {Panchapagesan, Thiruvaiyaru V.},
journal = {Mathematica Slovaca},
keywords = {weakly compact operator; unconditionally convergent operator; representation measure},
language = {eng},
number = {1},
pages = {57-66},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {Weak compactness of unconditionally convergent operators on $C_0(T)$},
url = {http://eudml.org/doc/34548},
volume = {52},
year = {2002},
}

TY - JOUR
AU - Panchapagesan, Thiruvaiyaru V.
TI - Weak compactness of unconditionally convergent operators on $C_0(T)$
JO - Mathematica Slovaca
PY - 2002
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 52
IS - 1
SP - 57
EP - 66
LA - eng
KW - weakly compact operator; unconditionally convergent operator; representation measure
UR - http://eudml.org/doc/34548
ER -

References

top
  1. DIESTEL J., UHL J. J., Vector Measures, Survey No. 15, Amer. Math. Soc, Providence, R.I., 1977. (1977) Zbl0369.46039MR0453964
  2. DINCULEANU N., Vector Measures, Pergamon Press, New York, 1967. (1967) MR0206190
  3. EDWARDS R. E., Functional Analysis, Theory and Applications, Holt Rinehart and Winston, New York-Chicago-San Francisco-Toronto-London, 1965. (1965) Zbl0182.16101MR0221256
  4. GROTHENDIECK A., Sur les applications linéares faiblement compactes d'espaces du type C(K), Canad. J. Math. 5 (1953), 129-173. (1953) MR0058866
  5. HALMOS P. R., Measure Theory, Van Nostrand, New York, 1950. (1950) Zbl0040.16802MR0033869
  6. MCARTHUR C. W., On a theorem of Orlicz and Pettis, Pacific J. Math. 22 (1967), 297-302. (1967) Zbl0161.33104MR0213848
  7. PANCHAPAGESAN T. V., Applications of a theorem of Grothendieck to vector measures, J. Math. Anal. Appl. 214 (1997), 89-101. (1997) MR1645515
  8. PANCHAPAGESAN T. V., Characterizations of weakly compact operators on C 0 ( T ) , Trans. Amer. Math. Soc. 350 (1998), 4849-4867. (1998) Zbl0906.47021MR1615942
  9. PELCZYŃSKI A., Projections in certain Banach spaces, Stadia Math. 19 (1960), 209-228. (1960) Zbl0104.08503MR0126145
  10. PELCZYŃSKI A., Banach spaces on which every unconditionally converging operator is weakly compact, Bull. Polish Acad. Sci. Math. 10 (1962), 641-648. (1962) Zbl0107.32504MR0149295
  11. THOMAS E., L'integration par rapport a une mesure de Radon vectorielle, Ann. Inst. Fourier (Grenoble) 20 (1970), 55-191. (1970) Zbl0195.06101MR0463396
  12. TUMARKIN, JU. B., On locally convex spaces with basis, Dokl. Akad. Nauk. SSSR 11 (1970), 1672-1675. (1970) Zbl0216.40701MR0271694

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.