Dilations of positive operator measures and bimeasures related to quantum mechanics

Pekka Lahti; Kari Ylinen

Mathematica Slovaca (2004)

  • Volume: 54, Issue: 2, page [169]-189
  • ISSN: 0232-0525

How to cite

top

Lahti, Pekka, and Ylinen, Kari. "Dilations of positive operator measures and bimeasures related to quantum mechanics." Mathematica Slovaca 54.2 (2004): [169]-189. <http://eudml.org/doc/34593>.

@article{Lahti2004,
author = {Lahti, Pekka, Ylinen, Kari},
journal = {Mathematica Slovaca},
keywords = {operator measure; operator bimeasure; dilation; canonical phase observable},
language = {eng},
number = {2},
pages = {[169]-189},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {Dilations of positive operator measures and bimeasures related to quantum mechanics},
url = {http://eudml.org/doc/34593},
volume = {54},
year = {2004},
}

TY - JOUR
AU - Lahti, Pekka
AU - Ylinen, Kari
TI - Dilations of positive operator measures and bimeasures related to quantum mechanics
JO - Mathematica Slovaca
PY - 2004
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 54
IS - 2
SP - [169]
EP - 189
LA - eng
KW - operator measure; operator bimeasure; dilation; canonical phase observable
UR - http://eudml.org/doc/34593
ER -

References

top
  1. ANDERSEN E. S.-JESSEN B., On the introduction of measures in infinite product sets, Danske Vid. Selsk. Mat.-Fys. Medd. 25 (1948). (1948) Zbl0031.01305MR0027041
  2. BERBERIAN S. K., Notes on Spectral Theory, D. van Nostrand Co., Inc, Princeton, 1966. (1966) Zbl0138.39104MR0190760
  3. BERG C.-CHRISTENSEN J. P. R.-RESSEL P., Harmonic Analysis on Semigroups, Grad. Texts in Math. 100, Springer, New York, 1984. (1984) Zbl0619.43001MR0747302
  4. BIRMAN M.-SOLOMYAK M., Tensor products of a finite number of spectral measures is always a spectral measure, Integral Equations Operator Theory 24 (1996), 179-187. (1996) MR1371945
  5. BIRMAN M. SH.-VERSHIK A. M.-SOLOMYAK M. Z., Product of commuting spectral measures need not be countably additive, Funktsional Anal. i Prilozhen. 13(1) (1978), 61-66 [English translation: Functional Anal. Appl. 13 (1979), 48-49]. (1978) MR0527523
  6. CASSINELLI G.-DE VITO E., Square-integrability modulo a subgroup, Trans. Amer. Math. Soc. 355 (2003), 1443-1465. MR1946399
  7. CASSINELLI G.-DE VITO E.-LAHTI P.-LEVRERO A., Phase space observables and isotypic spaces, J. Math. Phys. 41 (2000), 5883-5896. MR1779140
  8. CASSINELLI G.-DE VITO E.-LAHTI P.-PELLONPÄÄ J.-P., Covariant localizations in the torus and the phase observables, J. Math. Phys. 43 (2002), 693-704. MR1878565
  9. CHEN P. D.-LI J. F., On the existence of product stochastic measures, Acta Math. Appl. Sinica 7 (1991), 120-134. (1991) Zbl0735.60001MR1105385
  10. DAVIES E. B., The Quantum Theory of Open Systems, Academic Press, London-New York-San Francisco, 1976. (1976) MR0489429
  11. DAVIES E. B.-LEWIS J. T., An operational approach to quantum probability, Comm. Math. Phys. 17 (1970), 239-260. (1970) Zbl0194.58304MR0263379
  12. DOUGLAS R. G., Banach Algebra Techniques in Operator Theory, Academic Press, New York, 1972. (1972) Zbl0247.47001MR0361893
  13. DUDLEY R. M., A note on products of spectral measures, In: Vector and Operator Valued Measures and Applications (Proc. Sympos., Alta, Utah, 1972), Academic Press, New York, 1973, pp. 125-126. (1972) MR0336418
  14. DUNFORD N.-SCHWARTZ J. T., Linear Operators, Part I: General Theory, Interscience Publishers, New York, 1958. (1958) MR1009162
  15. DVURECENSKIJ A.-LAHTI P.-YLINEN K., Positive operator measures determined by their moment operators, Rep. Math. Phys. 45 (2000), 139-146. MR1751508
  16. GARRISON J. C.-WONG J., Canonically conjugate pairs, uncertainty relations, and phase operators, J. Math. Phys. 11 (1970), 2242-2249. (1970) Zbl0196.28003MR0266532
  17. HALMOS P. R., Measure Theory, Van Nostrand, Toronto, 1950. (1950) Zbl0040.16802MR0033869
  18. HOLEVO A. S., Probabilistic and Statistical Aspects of Quantum Theory, North Holland, Amsterdam, 1982. (1982) Zbl0497.46053MR0681693
  19. KARNI S.-MERZBACH E., On the extension of bimeasures, J. Anal. Math. 55 (1990), 1-16. (1990) Zbl0724.28003MR1094708
  20. KRAUS K., States, Effects, and Operations, Springer-Verlag, Berlin, 1983. (1983) Zbl0545.46049MR0725167
  21. LAHTI P.-MACZYŃSKI M.-YLINEN K., The moment operators of phase space observables and their number margins, Rep. Math. Phys. 41 (1998), 319-331. (1998) MR1653885
  22. LAHTI P.-PELLONPAA J.-P.-YLINEN K., Operator integrals and phase space observables, J. Math. Phys. 40 (1999), 2181-2189. (1999) Zbl0984.47054MR1683153
  23. LAHTI P.-PULMANNOVA S., Coexistent observables and effects in quantum mechanics, Rep. Math. Phys. 39 (1997), 339-351. (1997) Zbl0924.47054MR1477898
  24. LAHTI P.-PULMANNOVA S., Coexistence vs. functional coexistence of quantum observables, Rep. Math. Phys. 47 (2001), 199-212. Zbl1005.81006MR1836331
  25. LAHTI P.-PULMANNOVA S.-YLINEN K., Coexistent observables and effects in a convexity approach, J. Math. Phys. 39 (1998), 6364-6371. (1998) Zbl0935.81010MR1656976
  26. LERNER E. C.-HUANG H. W.-WALTERS G. E., Some mathematical properties of oscillator phase operators, J. Math. Phys. 11 (1970), 1679-1684. (1970) MR0260346
  27. LEWIS D. R., Integration with respect to vector measures, Pacific J. Math. 33 (1970), 157-165. (1970) Zbl0195.14303MR0259064
  28. LUDWIG G., Foundations of Quantum Mechanics, Vol. I, Springer-Verlag, Berlin, 1983. (1983) Zbl0509.46057MR0690770
  29. MLAK W., Notes on quantum circular operators, Preprint 303, Institute of Mathematics, Polish Academy of Sciences, 1984. (1984) 
  30. MARCZEWSKI E.-RYLL-NARDZEWSKI C., Remarks on the compactness and non direct products of measures, Fund. Math. 40 (1953), 165-170. (1953) Zbl0052.05001MR0059996
  31. NAIMARK M. A., On a representation of additive operator set functions, Comptes Rendus (Doklady) Acad. Sci. URSS 41 (1943), 359-361. (1943) Zbl0061.25410MR0010789
  32. OZAWA M., Quantum measuring processes of continuous observables, J. Math. Phys. 25 (1984), 79-87. (1984) MR0728889
  33. OZAWA M., Phase operator problem and macroscopic extension of quantum mechanics, Ann. Physics 257 (1997), 65-83. (1997) Zbl0921.03059MR1455986
  34. PAULSEN V. I., Completely Bounded Maps and Dilations, Pitman Res. Notes Math. Ser. 146, Longman, London, 1986. (1986) Zbl0614.47006MR0868472
  35. PELLONPÄÄ J.-P., Covariant phase observables in quantum mechanics, Ann. Univ. Turku. Ser. A I no. 288 (2002). Zbl0969.81003MR1975169
  36. PUTNAM C. P., Commutation Properties of Hilbert Space Operators and Related Topics, Springer-Verlag, Berlin, 1967. (1967) MR0217618
  37. RIESZ F.-SZ.-NAGY B., Functional Analysis, Dover Publications, Inc., New York, 1990. (1990) Zbl0732.47001MR1068530
  38. RUDIN W., Functional Analysis, McGraw Hill, New York, 1973. (1973) Zbl0253.46001MR0365062
  39. STINESPRING W. F., Positive functions on C * -algebras, Proc. Amer. Math. Soc. 6 (1955), 211-216. (1955) Zbl0064.36703MR0069403
  40. STULPE W., Classical Representations of Quantum Mechanics Related to Statistically Complete Observables, Wissenschaft und Technik Verlag, Berlin, 1997. (1997) Zbl0898.46069
  41. VARADARAJAN V. S., Geometry of Quantum Theory, Springer, Berlin, 1985. (1985) Zbl0581.46061MR0805158
  42. YLINEN K., On vector bimeasures, Ann. Mat. Pura Appl. 117 (1978), 115-138. (1978) MR0515957
  43. YLINEN K., Positive operator bimeasures and a noncommutative generalization, Studia Math. 118 (1996), 157-168. (1996) Zbl0399.46032MR1389762
  44. YLINEN K., Aspects of operator measures and bimeasures susceptible to a nonstandard treatment, In: Mathematisches Forschungsinstitut Oberwolfach, Tagungsbericht 08/1999, Nonstandard Analysis and Related Methods, and their Applications 21. 2.-27. 2. 1999. http://www.mfo.de/Meetings/Documents/1999/08/ReportJ08_99.ps. (1999) Zbl0862.46038

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.