Functional representation of preiterative/combinatory formalism

Isidore Fleischer

Mathematica Slovaca (2004)

  • Volume: 54, Issue: 4, page 327-335
  • ISSN: 0232-0525

How to cite

top

Fleischer, Isidore. "Functional representation of preiterative/combinatory formalism." Mathematica Slovaca 54.4 (2004): 327-335. <http://eudml.org/doc/34602>.

@article{Fleischer2004,
author = {Fleischer, Isidore},
journal = {Mathematica Slovaca},
keywords = {preiterative/combinatory formalism; preiterative algebra; selfmap; semigroup; substitution; associative/superassociative law; Cayley representation; Mal'tsev's formalism},
language = {eng},
number = {4},
pages = {327-335},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {Functional representation of preiterative/combinatory formalism},
url = {http://eudml.org/doc/34602},
volume = {54},
year = {2004},
}

TY - JOUR
AU - Fleischer, Isidore
TI - Functional representation of preiterative/combinatory formalism
JO - Mathematica Slovaca
PY - 2004
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 54
IS - 4
SP - 327
EP - 335
LA - eng
KW - preiterative/combinatory formalism; preiterative algebra; selfmap; semigroup; substitution; associative/superassociative law; Cayley representation; Mal'tsev's formalism
UR - http://eudml.org/doc/34602
ER -

References

top
  1. CURRY H. B.-FEYS R., Combinatory Logic, N. Holland, Amsterdam, 1968. (1968) Zbl0197.00601MR0244051
  2. DICKER R. M., The substitutive law, Proc. London Math. Soc. 13 (1963), 493-510. (1963) Zbl0122.25501MR0153610
  3. FLEISCHER I., Semigroup of not bijective finite selfmaps of an infinite set, Algebra Universalis 33 (1995), 186-190; Semigroup Forum 58 (1999), 468-470. (1995) Zbl0821.03030MR1318982
  4. HALMOS P. R., Algebraic Logic, Chelsea Publ. Comp., New York, 1962. (1962) Zbl0101.01101MR0131961
  5. HINDLEY J. R.-SELDIN J., Introduction to Combinators and X-Calculus, London Math. Soc. Stud. Texts 1, Cambridge Univ. Press, Cambridge, 1986. (1986) MR0879272
  6. HOWIE J. M., An Introduction to Semigroup Theory, London Math. Soc. Monogr. 7, Academic Press, London-New York-San Francisco, 1976. (1976) Zbl0355.20056MR0466355
  7. JÓNSSON B., Defining relations for full semigroups of finite transformations, Michigan Math. J. 9 (1962), 77-85. (1962) Zbl0111.03803MR0133390
  8. LAUSCH H.-NÖBAUER W., Algebra of Polynomials, North-Holland Math. Library 5, North-Holland Publ. Comp./Amer. Elsevier Publ. Comp., Inc, Amsterdam-London/New York, 1973. (1973) Zbl0283.12101MR0349544
  9. MAĽCEV A. I., Iterative Algebras and Posťs Varieties (Russian), [English translation in: The Metamathematics of Algebraic Systems. Collected papers: 1936-1967. Stud. Logic Found. Math. 66, North-Holland Publ. Comp., Amsterdam-London, 1971]. (1936) 
  10. MENGER K., On substitutive algebra and its syntax, Z. Math. Logik Grundlag. Math. 10 (1964), 81-104. (1964) Zbl0132.24601MR0158814
  11. ROSENBERG I. G., Maľcev algebras for universal algebra terms, In: Algebraic Logic and Universal Algebra in Computer Science, Conference, Ames, Iowa, USA, June 1-4, 1988. Proceedings (C. H. Bergman et al., eds.), Lecture Notes in Comput. Sci. 425, Springer-Verlag, Berlin, 1990, pp. 195-208. (1988) MR1077844
  12. SCHÖNFINKEL M., Bausteine der Mathematischen Logik, Math. Ann. 92 (1924), 305-316. [English translation in: HEIJENOORT, J. VAN: From Frege to Gödel. A Source Book in Mathematical Logic, 1879-1931, Harvard University Press, Cambridge, Mass., 1967]. (1924) MR1512218
  13. STENLUND S., Combinators, X-Terms and Proof Theory, D. Reidel, Dordrecht, 1972. (1972) 
  14. WHITLOCK H. I., A composition algebra for multiplace functions, Math. Ann. 157 (1964), 167-178. (1964) Zbl0126.03501MR0173647

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.