Dynamical stability of the typical continuous function
Mathematica Slovaca (2005)
- Volume: 55, Issue: 5, page 503-514
- ISSN: 0139-9918
Access Full Article
topHow to cite
topSteele, Timothy H.. "Dynamical stability of the typical continuous function." Mathematica Slovaca 55.5 (2005): 503-514. <http://eudml.org/doc/34614>.
@article{Steele2005,
author = {Steele, Timothy H.},
journal = {Mathematica Slovaca},
keywords = {-limit set; chain recurrence; Baire category},
language = {eng},
number = {5},
pages = {503-514},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {Dynamical stability of the typical continuous function},
url = {http://eudml.org/doc/34614},
volume = {55},
year = {2005},
}
TY - JOUR
AU - Steele, Timothy H.
TI - Dynamical stability of the typical continuous function
JO - Mathematica Slovaca
PY - 2005
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 55
IS - 5
SP - 503
EP - 514
LA - eng
KW - -limit set; chain recurrence; Baire category
UR - http://eudml.org/doc/34614
ER -
References
top- BLOCK L.-COPPEL W., Dynamics in One Dimension, Lecture Notes in Math. 1513, Springer-Verlag, New York, 1991. (1991) MR1176513
- BLOKH A.-BRUCKNER A. M.-HUMKE P. D.-SMÍTAL J., The space of -limit sets of a continuous map of the interval, Trans. Amer. Math. Soc. 348 (1996), 1357-1372. (1996) Zbl0860.54036MR1348857
- BRUCKNER A. M., Stability in the family of -limit sets of continuous self maps of the interval, Real Anal. Exchange 22 (1997), 52-57. (1997) MR1433599
- BRUCKNER A. M.-BRUCKNER J. B.-THOMSON B. S., Real Analysis, Prentice-Hall International, Upper Saddle River, NJ, 1997. (1997) Zbl0872.26001
- BRUCKNER A. M.-CEDER J. G., [unknown], Pacific J. Math. 156 (1992), 63-96. (1992) MR1182256
- BRUCKNER A. M.-SMITAL J., A characterization of -limit sets of maps of the interval with zero topological entropy, Ergodic Theory Dynam. Systems 13 (1993), 7-19. (1993) Zbl0788.58021MR1213076
- FEDORENKO V.-SARKOVSKII A.-SMITAL J., Characterizations of weakly chaotic maps of the interval, Proc. Amer. Math. Soc. 110 (1990), 141-148. (1990) Zbl0728.26008MR1017846
- LI T.-YORKE J., Period three implies chaos, Amer. Math. Monthly 82 (1975), 985-992. (1975) Zbl0351.92021MR0385028
- SMITAL J., Chaotic functions with zero topological entropy, Trans. Amer. Math. Soc. 297 (1986), 269-282. (1986) Zbl0639.54029MR0849479
- SMITAL J.-STEELE T. H., Stability of dynamical structures under perturbation of the generating function, (Submitted). Zbl1161.37017
- STEELE T. H., Iterative stability in the class of continuous functions, Real Anal. Exchange 24 (1999), 765-780. (1999) MR1704748
- STEELE T. H., Notions of stability for one-dimensional dynamical systems, Int. Math. J. 1 (2002), 543-555. Zbl1221.37085MR1860636
- STEELE T. H., The persistence of -limit sets under perturbation of the generating function, Real Anal. Excange 26 (2000), 421-428. Zbl1056.26019MR1844412
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.