On a class of difference sequences related to the p space defined by Orlicz functions

Binod Chandra Tripathy; Sabita Mahanta

Mathematica Slovaca (2007)

  • Volume: 57, Issue: 2, page [171]-178
  • ISSN: 0232-0525

How to cite

top

Tripathy, Binod Chandra, and Mahanta, Sabita. "On a class of difference sequences related to the $\ell ^p$ space defined by Orlicz functions." Mathematica Slovaca 57.2 (2007): [171]-178. <http://eudml.org/doc/34637>.

@article{Tripathy2007,
author = {Tripathy, Binod Chandra, Mahanta, Sabita},
journal = {Mathematica Slovaca},
keywords = {completeness; Orlicz function; difference sequence space; solid space; symmetric space},
language = {eng},
number = {2},
pages = {[171]-178},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {On a class of difference sequences related to the $\ell ^p$ space defined by Orlicz functions},
url = {http://eudml.org/doc/34637},
volume = {57},
year = {2007},
}

TY - JOUR
AU - Tripathy, Binod Chandra
AU - Mahanta, Sabita
TI - On a class of difference sequences related to the $\ell ^p$ space defined by Orlicz functions
JO - Mathematica Slovaca
PY - 2007
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 57
IS - 2
SP - [171]
EP - 178
LA - eng
KW - completeness; Orlicz function; difference sequence space; solid space; symmetric space
UR - http://eudml.org/doc/34637
ER -

References

top
  1. ESI A.-ET M., Some new sequence spaces defined by sequence of Orlicz functions, Indian J. Pure Appl. Math. 31 (2000), 967-972. MR1779908
  2. ET M., On Some new Orlicz sequence spaces, J. Anal. 9 (2001), 21-28. Zbl1019.46015MR1884659
  3. ET M.-NURAY F., Δ m -statistical convergence, Indian J. Pure Appl Math. 32 2001 961-969. Zbl1241.54002MR1848005
  4. KIZMAZ H., On certain sequence spaces, Canad. Math. Bull. 24 (1981), 169-176. (1981) Zbl0454.46010MR0619442
  5. LINDENSTRAUSS J.-TZAFRIRI L., On Orlicz sequence spaces, Isreal J. Math. 10 (1971), 379-390. (1971) Zbl0227.46042MR0313780
  6. MURSALEEN-KHAN A. M.-QAMARUDDIN, Difference sequence spaces defined Orlicz function, Demonstratio Math. 32 (1999), 145-150. (1999) MR1691724
  7. NAKANO H., Concave modulars, J. Math. Soc. Japan 5 (1953), 29-49. (1953) Zbl0050.33402MR0058882
  8. NURAY F.-GULCU A., Some new sequence spaces defined by Orlicz functions, Indian J. Pure Appl. Math. 26 (1995), 1169-1176. (1995) Zbl0852.46007MR1364737
  9. PARASHAR S. D.-CHOUDHARY B., Sequence spaces defined by Orlicz functions, Indian J. Pure Appl. Math. 25 (1994), 419-428. (1994) Zbl0802.46020MR1272814
  10. RATH D.-TRIPATHY B. C., Characterization of certain matrix operations, J. Orissa Math. Soc. 8 (1989), 121-134. (1989) 
  11. RUCKLE W. H., FK spaces in which the sequence of coordinate vector is bounded, Canad. J. Math. 25 (1973), 973-978. (1973) MR0338731
  12. SARGENT W. L. C., Some sequence spaces related to p spaces, J. London Math Soc. 2 35 (1960), 161-171. (1960) MR0116206
  13. TRIPATHY B. C., Matrix maps on the power series convergent on the unit disc, J. Anal. 6 (1998), 27-31. (1998) Zbl0919.40004MR1671144
  14. TRIPATHY B. C.-SEN M., On a new class of sequences related to the space p , Tamkang J. Math. 33 (2002), 167-171. Zbl1005.46002MR1897505
  15. TRIPATHY B. C.-MAHANTA S., On a class of sequences related to the p space defined by Orlicz functions, Soochow J. Math. 29 (2003), 379-391. MR2021538

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.