Quasi-uniform completions of partially ordered spaces

David Buhagiar; Tanja Telenta

Mathematica Slovaca (2007)

  • Volume: 57, Issue: 2, page [189]-200
  • ISSN: 0232-0525

How to cite

top

Buhagiar, David, and Telenta, Tanja. "Quasi-uniform completions of partially ordered spaces." Mathematica Slovaca 57.2 (2007): [189]-200. <http://eudml.org/doc/34639>.

@article{Buhagiar2007,
author = {Buhagiar, David, Telenta, Tanja},
journal = {Mathematica Slovaca},
keywords = {partially ordered set; quasi uniform space; uniform completion; uniform bicompletion},
language = {eng},
number = {2},
pages = {[189]-200},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {Quasi-uniform completions of partially ordered spaces},
url = {http://eudml.org/doc/34639},
volume = {57},
year = {2007},
}

TY - JOUR
AU - Buhagiar, David
AU - Telenta, Tanja
TI - Quasi-uniform completions of partially ordered spaces
JO - Mathematica Slovaca
PY - 2007
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 57
IS - 2
SP - [189]
EP - 200
LA - eng
KW - partially ordered set; quasi uniform space; uniform completion; uniform bicompletion
UR - http://eudml.org/doc/34639
ER -

References

top
  1. BUHAGIAR D.-MIWA T., Ordered uniform completions of GO-spaces, Topology Proc. 22 (1997), 59-80. (1997) Zbl0918.54026MR1657902
  2. ENGELKING R., General Topology, (rev. ed.), Heldermann, Berlin, 1989. (1989) Zbl0684.54001MR1039321
  3. ERNÉ M., Topologies on products of partially ordered sets I: Interval topologies, Algebra Universalis 11 (1980), 295-311. (1980) Zbl0454.06009MR0602017
  4. ERNÉ M., Topologies on products of partially ordered sets II: Ideal topologies, Algebra Universalis 11 (1980), 312-319. (1980) Zbl0453.06015MR0602018
  5. ERNÉ M., Topologies on products of partially ordered sets III: Order convergence and order tologies, Algebra Universalis 13 (1981), 1-23. (1981) MR0631406
  6. ERNÉ M., Ideal completions and compactifications, Appl. Categ. Structures 9 (2001), 217-243. Zbl0989.54027MR1836252
  7. ERNÉ M.-PALKO V., Uniform ideal completions, Math. Slovaca 48 (1998), 327-335. (1998) Zbl0960.06002MR1693533
  8. FLETCHER P.-LINDGREN W. F., Quasi-Uniform Spaces, Lecture Notes in Pure and Appl. Math. 77, Marcel Dekker, New York-Basel, 1982. (1982) Zbl0501.54018MR0660063
  9. FLETCHER P.-LINDGREN W. F., A theory of uniformities for generalized ordered spaces, Canad. J. Math. 31 (1979), 35-44. (1979) Zbl0402.54036MR0518703
  10. GANTNER T. E.-STEINLAGE R. C., Characterizations of quasi-uniformities, J. London Math. Soc. (2) 5 (1972), 48-52. (1972) Zbl0241.54023MR0380741
  11. KELLEY J. L., General Topology, Van Nostrand, New York, 1995. (1995) MR0070144
  12. KÜNZI H.-P. A., Quasi-uniform spaces, In: Encyclopedia of General Topology (K. P. Hart, J. Nagata, J. E. Vaughan, eds.), Elsevier Science Publishers B.V., Amsterdam, 2004, pp. 266-270. Zbl1193.54014
  13. KÜNZI H.-P. A., Quasi-uniform spaces in the year 2001, In: Recent Progress in General Topology II (M. Hušek, J. van Mill, eds.), Elsevier Science Publishers B.V., Amsterdam, 2002, pp. 313-344. Zbl1028.54026MR1970003
  14. NAGATA J., Modern General Topology, (rev. ed.), North Holland, Amsterdam, 1985. (1985) Zbl0598.54001MR0831659

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.