The existence of multiple positive solutions of -Laplacian boundary value problems
Mathematica Slovaca (2007)
- Volume: 57, Issue: 3, page [225]-242
- ISSN: 0139-9918
Access Full Article
topHow to cite
topLiu, Yuji. "The existence of multiple positive solutions of $p$-Laplacian boundary value problems." Mathematica Slovaca 57.3 (2007): [225]-242. <http://eudml.org/doc/34643>.
@article{Liu2007,
author = {Liu, Yuji},
journal = {Mathematica Slovaca},
keywords = {-Laplacian; positive solutions; fixed point theorem},
language = {eng},
number = {3},
pages = {[225]-242},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {The existence of multiple positive solutions of $p$-Laplacian boundary value problems},
url = {http://eudml.org/doc/34643},
volume = {57},
year = {2007},
}
TY - JOUR
AU - Liu, Yuji
TI - The existence of multiple positive solutions of $p$-Laplacian boundary value problems
JO - Mathematica Slovaca
PY - 2007
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 57
IS - 3
SP - [225]
EP - 242
LA - eng
KW - -Laplacian; positive solutions; fixed point theorem
UR - http://eudml.org/doc/34643
ER -
References
top- AGARWAL R. P.-O'REGAN D.-WONG P. J. Y., Positive Solutions of Differential, Difference and Integral Equations, Kluwer Academic Publ., Dordrecht, 1999. (1999) Zbl1157.34301MR1680024
- BAI C.-FANG J., Existence of multiple positive solutions for nonlinear m-point boundary value problems, Appl. Math. Comput. 140 (2003), 297-305. Zbl1030.34026MR1953901
- BAI C.-FANG J., Existence of multiple positive solutions for nonlinear multi-point boundary value problems, J. Math. Anal. Appl. 281 (2003), 76-85. MR1980075
- BITSADZE A. V., On the theory of nonlocal boundary value problems, Soviet Math Dock, (please specify the journal) 30 (1964), 8-10. (1964)
- BITSADZE A. V.-SAMARSKII A. A., Some elementary generalizations of linear elliptic boundary value problems, Dokal. Akad. Nauk. SSSR 185 (1969), 739-742. (1969) MR0247271
- DE COSTER C., Pairs of positive solutions for the one-dimension p-Laplacian, Nonlinear Anal. 23 (1994), 669-681. (1994) MR1297285
- DEIMLING K., Nonlinear Functional Analysis, Springer-Verlag, New York, 1985. (1985) Zbl0559.47040MR0787404
- GUO D.-LAKSHMIKANTHAM V., Nonlinear Problems on Abstract Cones, Academic Press, San Diego, CA, 1988. (1988)
- GUPTA C. P., A generalized multi-point boundary value problem for second-order ordinary differential equations, Appl. Math. Comput. 89 (1998), 133-146. (1998) Zbl0910.34032MR1491699
- GUPTA C. P., A non-resonant multi-point boundary value problem for a p-Laplacian type operator, J. Differential Equations 10 (2003), 143-152. Zbl1032.34012MR1976639
- IL'IN V.-MOISEEV E., Nonlocal boundary value problems of the second kind for a Sturm-Liouvile operator, Differ. Equ. 23 (1987), 979-987. (1987)
- JIANG D.-GUO W., Upper and lower solution method and a singular boundary value problem for one-dimension p-Laplacian, J. Math. Anal. Appl. 252 (2000), 631-648. MR1800189
- JIANG D.-LIU H., On the existence of nonnegative radial solutions for the one-dimension p-Laplacian elliptic systems, Ann. Polon. Math. 71 (1999), 19-29. (1999) MR1684042
- KARAKOSTAS G. L.-TSAMATOS P. CH., Sufficient conditions for the existence of nonnegative solutions of a local boundary value problem, Appl. Math. Lett. 15 (2002), 401-407. MR1902271
- LAN K., Multiple positive solutions of semi-linear differential equations with singularities, J. London Math. Soc. 63 (2001), 690-704. MR1825983
- LIAN W.-WONG F., Existence of positive solutions for higher-order generalized p-Laplacian BVPs, Appl. Math. Lett. 13 (2000), 35-43. Zbl0964.34018MR1772689
- LIU Y.-GE W., Multiple positive solutions to a three-point boundary value problem with p-Laplacian, J. Math. Anal. Appl. 277 (2003), 293-302. Zbl1026.34028MR1954477
- LIU B.-YU J., Solvability of multi-point boundary value problems at resonance, Appl. Math. Comput. 143 (2003), 275-299. Zbl1021.34013MR1981696
- MA R., Existence of solutions of nonlinear m-point boundary value problems, J. Math. Anal. Appl. 256 (2001), 556-567. Zbl0988.34009MR1821757
- MA R.-CASTANEDA N., Existence of solutions of non-linear m-point boundary value problems, J. Math. Anal. Appl. 256 (2001), 556-567. MR1821757
- O'REGAN D., Positive solutions to singular and nonsingular second-order boundary value problems, J. Math. Anal. Appl. 142 (1989), 40-52. (1989) MR1011407
- O'REGAN D., Some general existence principles and results for , SIAM J. Math. Anal. 24 (1993), 648-668. (1993) MR1215430
- WANG J.-GUO W., A singular boundary value problem for one-dimension p-Laplacian, J. Math. Anal. Appl. 201 (2001), 851-866.
- WANG J. Y.-ZHENG D. W., On the existence of positive solutions to a three-point boundary value problem for the one-dimensional p-Laplacian, ZAMM Z. Angew. Math. Mech. 77 (1997), 477-479. (1997) Zbl0879.34032MR1455893
- XIAOMING H.-GE W., Triple solutions for second order three-point boundary value problems, J. Math. Anal. Appl. 268 (2002), 256-265. Zbl1043.34015MR1893205
- GUO Y.-GE W., Three positive solutions for the one dimension p-Laplacian, J. Math. Anal. Appl. 286 (2003), 491-508. MR2008845
- LU H.-O'REGAN D.-ZHONG C., Multiple positive solutions for one dimension I singular p-Laplacian, Appl. Math. Comput. 133 (2002), 407-422. MR1924626
- KARAKOSTAS G. L., Triple positive solutions for the -Laplacian when is a supmultiplicative-like function, Differ. Equ. 69 (2004), 1-13. MR2057656
- KARAKOSTAS G. L., Triple positive solutions for the -Laplacian when is a sup-multiplicative-like function, Differ. Equ. 68 (2004), 1-12. Zbl1057.34010MR2057655
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.