The existence of multiple positive solutions of p -Laplacian boundary value problems

Yuji Liu

Mathematica Slovaca (2007)

  • Volume: 57, Issue: 3, page [225]-242
  • ISSN: 0139-9918

How to cite

top

Liu, Yuji. "The existence of multiple positive solutions of $p$-Laplacian boundary value problems." Mathematica Slovaca 57.3 (2007): [225]-242. <http://eudml.org/doc/34643>.

@article{Liu2007,
author = {Liu, Yuji},
journal = {Mathematica Slovaca},
keywords = {-Laplacian; positive solutions; fixed point theorem},
language = {eng},
number = {3},
pages = {[225]-242},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {The existence of multiple positive solutions of $p$-Laplacian boundary value problems},
url = {http://eudml.org/doc/34643},
volume = {57},
year = {2007},
}

TY - JOUR
AU - Liu, Yuji
TI - The existence of multiple positive solutions of $p$-Laplacian boundary value problems
JO - Mathematica Slovaca
PY - 2007
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 57
IS - 3
SP - [225]
EP - 242
LA - eng
KW - -Laplacian; positive solutions; fixed point theorem
UR - http://eudml.org/doc/34643
ER -

References

top
  1. AGARWAL R. P.-O'REGAN D.-WONG P. J. Y., Positive Solutions of Differential, Difference and Integral Equations, Kluwer Academic Publ., Dordrecht, 1999. (1999) Zbl1157.34301MR1680024
  2. BAI C.-FANG J., Existence of multiple positive solutions for nonlinear m-point boundary value problems, Appl. Math. Comput. 140 (2003), 297-305. Zbl1030.34026MR1953901
  3. BAI C.-FANG J., Existence of multiple positive solutions for nonlinear multi-point boundary value problems, J. Math. Anal. Appl. 281 (2003), 76-85. MR1980075
  4. BITSADZE A. V., On the theory of nonlocal boundary value problems, Soviet Math Dock, (please specify the journal) 30 (1964), 8-10. (1964) 
  5. BITSADZE A. V.-SAMARSKII A. A., Some elementary generalizations of linear elliptic boundary value problems, Dokal. Akad. Nauk. SSSR 185 (1969), 739-742. (1969) MR0247271
  6. DE COSTER C., Pairs of positive solutions for the one-dimension p-Laplacian, Nonlinear Anal. 23 (1994), 669-681. (1994) MR1297285
  7. DEIMLING K., Nonlinear Functional Analysis, Springer-Verlag, New York, 1985. (1985) Zbl0559.47040MR0787404
  8. GUO D.-LAKSHMIKANTHAM V., Nonlinear Problems on Abstract Cones, Academic Press, San Diego, CA, 1988. (1988) 
  9. GUPTA C. P., A generalized multi-point boundary value problem for second-order ordinary differential equations, Appl. Math. Comput. 89 (1998), 133-146. (1998) Zbl0910.34032MR1491699
  10. GUPTA C. P., A non-resonant multi-point boundary value problem for a p-Laplacian type operator, J. Differential Equations 10 (2003), 143-152. Zbl1032.34012MR1976639
  11. IL'IN V.-MOISEEV E., Nonlocal boundary value problems of the second kind for a Sturm-Liouvile operator, Differ. Equ. 23 (1987), 979-987. (1987) 
  12. JIANG D.-GUO W., Upper and lower solution method and a singular boundary value problem for one-dimension p-Laplacian, J. Math. Anal. Appl. 252 (2000), 631-648. MR1800189
  13. JIANG D.-LIU H., On the existence of nonnegative radial solutions for the one-dimension p-Laplacian elliptic systems, Ann. Polon. Math. 71 (1999), 19-29. (1999) MR1684042
  14. KARAKOSTAS G. L.-TSAMATOS P. CH., Sufficient conditions for the existence of nonnegative solutions of a local boundary value problem, Appl. Math. Lett. 15 (2002), 401-407. MR1902271
  15. LAN K., Multiple positive solutions of semi-linear differential equations with singularities, J. London Math. Soc. 63 (2001), 690-704. MR1825983
  16. LIAN W.-WONG F., Existence of positive solutions for higher-order generalized p-Laplacian BVPs, Appl. Math. Lett. 13 (2000), 35-43. Zbl0964.34018MR1772689
  17. LIU Y.-GE W., Multiple positive solutions to a three-point boundary value problem with p-Laplacian, J. Math. Anal. Appl. 277 (2003), 293-302. Zbl1026.34028MR1954477
  18. LIU B.-YU J., Solvability of multi-point boundary value problems at resonance, Appl. Math. Comput. 143 (2003), 275-299. Zbl1021.34013MR1981696
  19. MA R., Existence of solutions of nonlinear m-point boundary value problems, J. Math. Anal. Appl. 256 (2001), 556-567. Zbl0988.34009MR1821757
  20. MA R.-CASTANEDA N., Existence of solutions of non-linear m-point boundary value problems, J. Math. Anal. Appl. 256 (2001), 556-567. MR1821757
  21. O'REGAN D., Positive solutions to singular and nonsingular second-order boundary value problems, J. Math. Anal. Appl. 142 (1989), 40-52. (1989) MR1011407
  22. O'REGAN D., Some general existence principles and results for [ Φ ( y ' ) ] ' = q ( t ) f ( t , y , y ' ) ( 0 < t < 1 ) , SIAM J. Math. Anal. 24 (1993), 648-668. (1993) MR1215430
  23. WANG J.-GUO W., A singular boundary value problem for one-dimension p-Laplacian, J. Math. Anal. Appl. 201 (2001), 851-866. 
  24. WANG J. Y.-ZHENG D. W., On the existence of positive solutions to a three-point boundary value problem for the one-dimensional p-Laplacian, ZAMM Z. Angew. Math. Mech. 77 (1997), 477-479. (1997) Zbl0879.34032MR1455893
  25. XIAOMING H.-GE W., Triple solutions for second order three-point boundary value problems, J. Math. Anal. Appl. 268 (2002), 256-265. Zbl1043.34015MR1893205
  26. GUO Y.-GE W., Three positive solutions for the one dimension p-Laplacian, J. Math. Anal. Appl. 286 (2003), 491-508. MR2008845
  27. LU H.-O'REGAN D.-ZHONG C., Multiple positive solutions for one dimension I singular p-Laplacian, Appl. Math. Comput. 133 (2002), 407-422. MR1924626
  28. KARAKOSTAS G. L., Triple positive solutions for the Φ -Laplacian when Φ is a supmultiplicative-like function, Differ. Equ. 69 (2004), 1-13. MR2057656
  29. KARAKOSTAS G. L., Triple positive solutions for the Φ -Laplacian when Φ is a sup-multiplicative-like function, Differ. Equ. 68 (2004), 1-12. Zbl1057.34010MR2057655

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.