Infinite products of filters
Mathematica Slovaca (2007)
- Volume: 57, Issue: 4, page [369]-380
- ISSN: 0139-9918
Access Full Article
topHow to cite
topDavis, Brian L., and Labuda, Iwo. "Infinite products of filters." Mathematica Slovaca 57.4 (2007): [369]-380. <http://eudml.org/doc/34655>.
@article{Davis2007,
author = {Davis, Brian L., Labuda, Iwo},
journal = {Mathematica Slovaca},
keywords = {filter; product of filters; compact filter; ordinal; transfinite induction},
language = {eng},
number = {4},
pages = {[369]-380},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {Infinite products of filters},
url = {http://eudml.org/doc/34655},
volume = {57},
year = {2007},
}
TY - JOUR
AU - Davis, Brian L.
AU - Labuda, Iwo
TI - Infinite products of filters
JO - Mathematica Slovaca
PY - 2007
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 57
IS - 4
SP - [369]
EP - 380
LA - eng
KW - filter; product of filters; compact filter; ordinal; transfinite induction
UR - http://eudml.org/doc/34655
ER -
References
top- CHEVALLEY C.-FRINK O., Bicompactness of cartesian products, Bull. Amer. Math. Soc. 47 (1941), 612-614. (1941) Zbl0027.14202MR0004760
- DAVIS B. L.-LABUDA, L, Unity of compactness, Quaest. Math. (2007) (To appear). Zbl1132.54013MR2337362
- DOLECKI S., Convergence-theoretic characterizations of compactness, Topology Appl. 125 (2002), 393-417. Zbl1022.54015MR1934279
- DOLECKI S.-GRECO G. H., Familles pseudotopologiques de filtres et compacte, C. R. Acad. Sci. Paris Sér. I Math. 296 (1983), 211-214. (1983) MR0692979
- DREWNOWSKI L.-LABUDA, L, On minimal upper semicontinuous compact-valued maps, Rocky Mountain J. Math. 20 (1990), 737-752. (1990) Zbl0742.54006MR1073720
- ENGELKING R., General Topology, PWN Polish Scientific Publishers, Warszawa, 1977. (1977) Zbl0373.54002MR0500780
- Handbook of Set-Theoretic Topology, (K. Kunen, J. E. Vaughan, eds.), Elsevier Science Publishers, Amsterdam-New York-Oxford, 1984. (1984) Zbl0546.00022MR0776619
- JORDAN F.-LABUDA L.-MYNARD F., Finite products of filters that are compact relative to a class of filters, Appl. Gen. Topol. (To appear). Zbl1155.54002MR2864007
- JORDAN F.-MYNARD F., Compatible relations on filters and stability of local topological properties under supremum and product, Topology Appl. 153 (2006), 2386-2412 Zbl1188.54007MR2243719
- KELLEY J. L., General Topology, Van Nostrand, New York, 1955. (1955) Zbl0066.16604MR0070144
- LABUDA, L, Compactoidness, Rocky Mountain J. Math. 36 (2006), 555-574. Zbl1165.54307MR2234820
- NOVAK J., On the cartesian product of two compact spaces, Fund. Math. 40 (1953), 106-112. (1953) Zbl0053.12404MR0060212
- PETTIS B. J., Cluster sets of nets, Proc. Amer. Math. Soc. 22 (1969), 386-391. (1969) Zbl0181.25601MR0276922
- STEPHENSON R. M., Jr., Initially -compact and related spaces, In: Handbook of Set-Theoretic Topology, Elsevier Science Publishers, 1984, pp. 603-632. (1984) Zbl0588.54025MR0776632
- TERASAKA H., On cartesian products of compact spaces, Osaka J. Math. 4 (1952), 11-15. (1952) MR0051500
- VAUGHAN J. E., Products of topological spaces, General Topology Appl. 8 (1978), 207-217. (1978) Zbl0396.54016MR0493935
- VAUGHAN J. E., Countably compact and sequentially compact spaces, In: Handbook of Set-Theoretic Topology, Elsevier Science Publishers, 1984, pp. 569-602. (1984) Zbl0562.54031MR0776631
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.