The joint distribution of additive and complex-valued multiplicative functions

Antanas Laurinčikas

Acta Mathematica Universitatis Ostraviensis (2005)

  • Volume: 13, Issue: 1, page 35-46
  • ISSN: 1804-1388

Abstract

top
In the paper the necessary and sufficient conditions for the existence of joint limit distribution for real additive and complex-valued multiplicative function are presented.

How to cite

top

Laurinčikas, Antanas. "The joint distribution of additive and complex-valued multiplicative functions." Acta Mathematica Universitatis Ostraviensis 13.1 (2005): 35-46. <http://eudml.org/doc/35151>.

@article{Laurinčikas2005,
abstract = {In the paper the necessary and sufficient conditions for the existence of joint limit distribution for real additive and complex-valued multiplicative function are presented.},
author = {Laurinčikas, Antanas},
journal = {Acta Mathematica Universitatis Ostraviensis},
keywords = {additive function; characteristic transform; probability measure; multiplicative function; weak convergence; additive function; characteristic transform; probability measure; multiplicative function; weak convergence},
language = {eng},
number = {1},
pages = {35-46},
publisher = {University of Ostrava},
title = {The joint distribution of additive and complex-valued multiplicative functions},
url = {http://eudml.org/doc/35151},
volume = {13},
year = {2005},
}

TY - JOUR
AU - Laurinčikas, Antanas
TI - The joint distribution of additive and complex-valued multiplicative functions
JO - Acta Mathematica Universitatis Ostraviensis
PY - 2005
PB - University of Ostrava
VL - 13
IS - 1
SP - 35
EP - 46
AB - In the paper the necessary and sufficient conditions for the existence of joint limit distribution for real additive and complex-valued multiplicative function are presented.
LA - eng
KW - additive function; characteristic transform; probability measure; multiplicative function; weak convergence; additive function; characteristic transform; probability measure; multiplicative function; weak convergence
UR - http://eudml.org/doc/35151
ER -

References

top
  1. Bakštys A., On limit distribution laws for arithmetic multiplicative functions, , Liet. matem. rink., 8 (1968), 5–20 (in Russian). (1968) 
  2. Delange H., On the distribution modulo 1 of additive functions, , J. Indian Math. Soc., 39 (1970), 215–235. (1970) MR0491576
  3. Delange H., Sur la distribution des valeurs des fonctions multiplicative complexes, , C. R. Acad. Sc. Paris, 276, Série A (1973), 161–164. (1973) MR0369302
  4. Erdös P., 10.1112/jlms/s1-13.2.119, , III, J. London Math. Soc. 13 (1938), 119–127. (1938) DOI10.1112/jlms/s1-13.2.119
  5. Erdös P., 10.1090/S0002-9904-1946-08604-8, , Bull. Amer. Math. Soc., 52 (1946), 527–537. (1946) MR0016078DOI10.1090/S0002-9904-1946-08604-8
  6. Erdös P. A. Wintner, 10.2307/2371326, , Amer. J. Math. 61 (1939), 713–721. (1939) MR0000247DOI10.2307/2371326
  7. Halász G., 10.1007/BF01894515, , Acta Math. Sci. Hung., 19(1968), 365–403. (1968) MR0230694DOI10.1007/BF01894515
  8. Laurinčikas A., On joint value distribution of additive and multiplicative functions, , Liet. matem. rink., 16(2)(1976), 190–192 (in Russian). (1976) 
  9. Laurinčikas A., On joint distribution of values of arithmetical functions, , Liet. matem. rink., 31(3)(1991), 433–454 (in Russian). (1991) MR1162237
  10. Laurinčikas A., Limit Theorems for the Riemann Zeta-Function, , Kluwer, Dordrecht, Boston, London, 1996. (1996) MR1376140
  11. Laurinčikas A., The joint distribution of the Riemann zeta-function, , 2005, submitted. MR2217939
  12. Levin B. V., Timofeev N. M., Analytic method in probabilistic number theory, , Uch. zap. Vladim. gos. ped. inst., 57(2) (1971), 57–150 (in Russian). (1971) MR0302596
  13. Levin B. V., Timofeev N. M., Tuliaganov S. T., Distribution of values of multiplicative functions, , Liet. matem. rink., 13(1) (1973), 87–100 (in Russian). (1973) MR0314790

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.