Discrete limit laws for additive functions on the symmetric group

Eugenijus Manstavičius

Acta Mathematica Universitatis Ostraviensis (2005)

  • Volume: 13, Issue: 1, page 47-55
  • ISSN: 1804-1388

Abstract

top
Inspired by probabilistic number theory, we establish necessary and sufficient conditions under which the numbers of cycles with lengths in arbitrary sets posses an asymptotic limit law. The approach can be extended to deal with the counts of components with the size constraints for other random combinatorial structures.

How to cite

top

Manstavičius, Eugenijus. "Discrete limit laws for additive functions on the symmetric group." Acta Mathematica Universitatis Ostraviensis 13.1 (2005): 47-55. <http://eudml.org/doc/35152>.

@article{Manstavičius2005,
abstract = {Inspired by probabilistic number theory, we establish necessary and sufficient conditions under which the numbers of cycles with lengths in arbitrary sets posses an asymptotic limit law. The approach can be extended to deal with the counts of components with the size constraints for other random combinatorial structures.},
author = {Manstavičius, Eugenijus},
journal = {Acta Mathematica Universitatis Ostraviensis},
keywords = {random permutation; cycle structure; Poisson distribution; factorial moment; random permutation; cycle structure; Poisson distribution; factorial moment},
language = {eng},
number = {1},
pages = {47-55},
publisher = {University of Ostrava},
title = {Discrete limit laws for additive functions on the symmetric group},
url = {http://eudml.org/doc/35152},
volume = {13},
year = {2005},
}

TY - JOUR
AU - Manstavičius, Eugenijus
TI - Discrete limit laws for additive functions on the symmetric group
JO - Acta Mathematica Universitatis Ostraviensis
PY - 2005
PB - University of Ostrava
VL - 13
IS - 1
SP - 47
EP - 55
AB - Inspired by probabilistic number theory, we establish necessary and sufficient conditions under which the numbers of cycles with lengths in arbitrary sets posses an asymptotic limit law. The approach can be extended to deal with the counts of components with the size constraints for other random combinatorial structures.
LA - eng
KW - random permutation; cycle structure; Poisson distribution; factorial moment; random permutation; cycle structure; Poisson distribution; factorial moment
UR - http://eudml.org/doc/35152
ER -

References

top
  1. Arratia R., Barbour A.D., Tavaré S., Logarithmic Combinatorial Structures: a Probabilistic Approach, , EMS Monographs in Mathematics, EMS Publishing House, Zürich, 2003. MR2032426
  2. Arratia R., Tavaré S., 10.1002/rsa.3240030310, , Random Structures and Algorithms 3(1992), 3, 321–345. (1992) MR1164844DOI10.1002/rsa.3240030310
  3. Babu G.J., Manstavičius E., 10.1023/A:1022419328971, , Ann. Inst. Stat. Math. 54(2002), 3, 607–620. MR1932405DOI10.1023/A:1022419328971
  4. Elliott P. D. T. A., Probabilistic Number Theory, . I, II. Springer, New York–Heidelberg–Berlin, 1979/80. (1979) Zbl0431.10029MR0551361
  5. Goncharov V.L., On the distribution of cycles in permutations, , Dokl. Acad. Nauk SSSR 35(1942), 299–301. (1942) 
  6. Kolchin V.F., Random Mappings, , Optimization Software, Inc. New York, 1986. (1986) Zbl0605.60010MR0865130
  7. Kubilius J., Probabilistic Methods in the Theory of Numbers, , Amer. Math. Soc. Translations 11, Providence, RI, 1964. (1964) Zbl0133.30203MR0160745
  8. Manstavičius E., 10.1007/BF02986863, , Lith. Math. J. 36(1996), 4, 400–408. (1996) MR1456921DOI10.1007/BF02986863
  9. Manstavičius E., 10.1007/BF02465552, , Lith. Math. J. 38(1998), 2, 160–171. (1998) MR1657912DOI10.1007/BF02465552
  10. Manstavičius E., Functional limit theorem for sequences of mappings on the symmetric group, , In: Anal. Probab. Methods in Number Theory, A. Dubickas et al (Eds), TEV, Vilnius, 2002, 175–187. MR1964861
  11. Manstavičius E., 10.1023/A:1025812604540, , Acta Applicandae Math. 79(2003), 1–8. MR2021871DOI10.1023/A:1025812604540
  12. Manstavičius E., Asymptotic value distribution of additive functions defined on the symmetric group, , (submitted, 2005, 23 p.). 
  13. Šiaulys J., 10.1023/A:1007617714857, , Lith. Math. J. 40(2000), 4, 389–408. DOI10.1023/A:1007617714857

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.