Congruent numbers with higher exponents

Florian Luca; László Szalay

Acta Mathematica Universitatis Ostraviensis (2006)

  • Volume: 14, Issue: 1, page 49-55
  • ISSN: 1804-1388

Abstract

top
This paper investigates the system of equations x 2 + a y m = z 1 2 , x 2 - a y m = z 2 2 in positive integers x , y , z 1 , z 2 , where a and m are positive integers with m 3 . In case of m = 2 we would obtain the classical problem of congruent numbers. We provide a procedure to solve the simultaneous equations above for a class of the coefficient a with the condition gcd ( x , z 1 ) = gcd ( x , z 2 ) = gcd ( z 1 , z 2 ) = 1 . Further, under same condition, we even prove a finiteness theorem for arbitrary nonzero a .

How to cite

top

Luca, Florian, and Szalay, László. "Congruent numbers with higher exponents." Acta Mathematica Universitatis Ostraviensis 14.1 (2006): 49-55. <http://eudml.org/doc/35162>.

@article{Luca2006,
abstract = {This paper investigates the system of equations \[x^2+ay^m=z\_1^2, \quad \quad x^2-ay^m=z\_2^2\] in positive integers $x$, $y$, $z_1$, $z_2$, where $a$ and $m$ are positive integers with $m\ge 3$. In case of $m=2$ we would obtain the classical problem of congruent numbers. We provide a procedure to solve the simultaneous equations above for a class of the coefficient $a$ with the condition $\gcd (x,z_1)=\gcd (x,z_2)=\gcd (z_1,z_2)=1$. Further, under same condition, we even prove a finiteness theorem for arbitrary nonzero $a$.},
author = {Luca, Florian, Szalay, László},
journal = {Acta Mathematica Universitatis Ostraviensis},
keywords = {congruent numbers; quadratic equations; higher degree equations; congruent numbers; Fermat type equations; primitive solutions},
language = {eng},
number = {1},
pages = {49-55},
publisher = {University of Ostrava},
title = {Congruent numbers with higher exponents},
url = {http://eudml.org/doc/35162},
volume = {14},
year = {2006},
}

TY - JOUR
AU - Luca, Florian
AU - Szalay, László
TI - Congruent numbers with higher exponents
JO - Acta Mathematica Universitatis Ostraviensis
PY - 2006
PB - University of Ostrava
VL - 14
IS - 1
SP - 49
EP - 55
AB - This paper investigates the system of equations \[x^2+ay^m=z_1^2, \quad \quad x^2-ay^m=z_2^2\] in positive integers $x$, $y$, $z_1$, $z_2$, where $a$ and $m$ are positive integers with $m\ge 3$. In case of $m=2$ we would obtain the classical problem of congruent numbers. We provide a procedure to solve the simultaneous equations above for a class of the coefficient $a$ with the condition $\gcd (x,z_1)=\gcd (x,z_2)=\gcd (z_1,z_2)=1$. Further, under same condition, we even prove a finiteness theorem for arbitrary nonzero $a$.
LA - eng
KW - congruent numbers; quadratic equations; higher degree equations; congruent numbers; Fermat type equations; primitive solutions
UR - http://eudml.org/doc/35162
ER -

References

top
  1. Alter R., Curtz T. B., Kubota K. K, ‘Remarks and results on congruent numbers’, , Proc. 3rd S. E. Conf. Combin. Graph Theory Comput., Congr. Num., 6 (1972), 27-35. (1972) Zbl0259.10010MR0349554
  2. Darmon H., Granville A., ‘On the equations z m = F ( x , y ) and A x p + B y q = C z r ’, , Bull. London Math. Soc., 27 (1995), 513–543. (1995) MR1348707
  3. Darmon H., Merel L., ‘Winding quotients and some variants of Fermat’s Last Theorem’, , J. reine angew. Math., 490 (1997), 81-100. (1997) Zbl0976.11017MR1468926
  4. Dickson L. E., History of the theory of numbers, , Vol. 2, Diophantine analysis, Washington, 1920, 459-472. (1920) 
  5. Guy R. K., Unsolved Problems in Number Theory, , (D27, p. 306,) Third Edition, Springer, 2004. Zbl1058.11001MR2076335
  6. Luca F., Szalay L., ‘Consecutive binomial coefficients satisfying a quadratic relation’, , Publ. Math. Debrecen, to appear. Zbl1121.11025MR2228483
  7. Ribet K., ‘On the equation a p + 2 α b p + c p = 0 ’, , Acta Arith., 79 (1997), 7-16. (1997) MR1438112
  8. Robert S., ‘Note on a problem of Fibonacci’s’, , Proc. London Math. Soc., 11 (1879), 35-44. 
  9. Tunnel J. B., 10.1007/BF01389327, , Invent. Math., 72 (1983), 323-334. (1983) MR0700775DOI10.1007/BF01389327

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.