Common terms in binary recurrences
Acta Mathematica Universitatis Ostraviensis (2006)
- Volume: 14, Issue: 1, page 57-61
- ISSN: 1804-1388
Access Full Article
topAbstract
topHow to cite
topOrosz, Erzsébet. "Common terms in binary recurrences." Acta Mathematica Universitatis Ostraviensis 14.1 (2006): 57-61. <http://eudml.org/doc/35163>.
@article{Orosz2006,
abstract = {The purpose of this paper is to prove that the common terms of linear recurrences $M(2a,-1,0,b)$ and $N(2c,-1,0,d)$ have at most $2$ common terms if $p=2$, and have at most three common terms if $p>2$ where $D$ and $p$ are fixed positive integers and $p$ is a prime, such that neither $D$ nor $D+p$ is perfect square, further $a,b,c,d$ are nonzero integers satisfying the equations $a^2-Db^2=1$ and $c^2-(D+p)d^2=1$.},
author = {Orosz, Erzsébet},
journal = {Acta Mathematica Universitatis Ostraviensis},
keywords = {Pell equation; binary sequences; common terms; second-order linear recursive sequence},
language = {eng},
number = {1},
pages = {57-61},
publisher = {University of Ostrava},
title = {Common terms in binary recurrences},
url = {http://eudml.org/doc/35163},
volume = {14},
year = {2006},
}
TY - JOUR
AU - Orosz, Erzsébet
TI - Common terms in binary recurrences
JO - Acta Mathematica Universitatis Ostraviensis
PY - 2006
PB - University of Ostrava
VL - 14
IS - 1
SP - 57
EP - 61
AB - The purpose of this paper is to prove that the common terms of linear recurrences $M(2a,-1,0,b)$ and $N(2c,-1,0,d)$ have at most $2$ common terms if $p=2$, and have at most three common terms if $p>2$ where $D$ and $p$ are fixed positive integers and $p$ is a prime, such that neither $D$ nor $D+p$ is perfect square, further $a,b,c,d$ are nonzero integers satisfying the equations $a^2-Db^2=1$ and $c^2-(D+p)d^2=1$.
LA - eng
KW - Pell equation; binary sequences; common terms; second-order linear recursive sequence
UR - http://eudml.org/doc/35163
ER -
References
top- Bennett M. A., On the number of solutions of simultaneous Pell equations, , J. Reine Angew. Math., 498 (1998), 173–199. (1998) Zbl1044.11011MR1629862
- Binz J., Elemente der Math, , 35 (1980), 155. (1980)
- Hirsch M. D., 10.2307/2689536, , Math. Mag., 50 (1977), 262. (1977) Zbl0378.10006MR1572238DOI10.2307/2689536
- Kiss P., 10.1007/BF01897310, , Acta Math. Acad. Sci. Hungar. 40 (1–2), (1982), 119–123. (1982) Zbl0508.10006MR0685998DOI10.1007/BF01897310
- Kiss P., Közös elemek másodrendű rekurzív sorozatokban, . Az egri Ho Si Minh Tanárképző Főiskola füzetei XVI. (1982), 539–546. (1982)
- Kiss P., Differences of the terms of linear recurrences, , Studia Scientiarum Mathematicarum Hungarica 20 (1985), 285–293. (1985) Zbl0628.10008MR0886031
- Liptai K., Közös elemek másodrendű rekurzív sorozatokban, , Acta. Acad. Pead. Agriensis, Sect. Math., 21 (1994), 47–54. (1994)
- Mátyás F., On common terms of second order linear recurrences, , Mat. Sem. Not. (Kobe Univ. Jappan), 9 (1981), 89–97. (1981) MR0633999
- Mignotte M., 10.1016/0304-3975(78)90043-9, , Theoretical Comput. Sci, 7 (1978), 117–122. (1978) MR0498356DOI10.1016/0304-3975(78)90043-9
- Mordell L. J., Diophantine equations, , Acad. Press, London, (1969), 270. (1969) Zbl0188.34503MR0249355
- Revuz G., Equations deiphanties exponentielles, , Bull. Soc. Math. France, Mém., 37 (1974), 139–156. (1974) MR0369249
- Schlickewei H. P., Schmidt W. M., Linear equations in members of recurrence sequences, , Ann. Scuola Norm. Sup. Pisa Cl. Sci. 20 (1993), 219–246. (1993) Zbl0803.11010MR1233637
- Stewart C. L., On divisors of terms of linear recurrence sequences, , J. Reine Angew, Math., 333 (1982), 12–31. (1982) Zbl0475.10009MR0660783
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.