Common terms in binary recurrences

Erzsébet Orosz

Acta Mathematica Universitatis Ostraviensis (2006)

  • Volume: 14, Issue: 1, page 57-61
  • ISSN: 1804-1388

Abstract

top
The purpose of this paper is to prove that the common terms of linear recurrences M ( 2 a , - 1 , 0 , b ) and N ( 2 c , - 1 , 0 , d ) have at most 2 common terms if p = 2 , and have at most three common terms if p > 2 where D and p are fixed positive integers and p is a prime, such that neither D nor D + p is perfect square, further a , b , c , d are nonzero integers satisfying the equations a 2 - D b 2 = 1 and c 2 - ( D + p ) d 2 = 1 .

How to cite

top

Orosz, Erzsébet. "Common terms in binary recurrences." Acta Mathematica Universitatis Ostraviensis 14.1 (2006): 57-61. <http://eudml.org/doc/35163>.

@article{Orosz2006,
abstract = {The purpose of this paper is to prove that the common terms of linear recurrences $M(2a,-1,0,b)$ and $N(2c,-1,0,d)$ have at most $2$ common terms if $p=2$, and have at most three common terms if $p>2$ where $D$ and $p$ are fixed positive integers and $p$ is a prime, such that neither $D$ nor $D+p$ is perfect square, further $a,b,c,d$ are nonzero integers satisfying the equations $a^2-Db^2=1$ and $c^2-(D+p)d^2=1$.},
author = {Orosz, Erzsébet},
journal = {Acta Mathematica Universitatis Ostraviensis},
keywords = {Pell equation; binary sequences; common terms; second-order linear recursive sequence},
language = {eng},
number = {1},
pages = {57-61},
publisher = {University of Ostrava},
title = {Common terms in binary recurrences},
url = {http://eudml.org/doc/35163},
volume = {14},
year = {2006},
}

TY - JOUR
AU - Orosz, Erzsébet
TI - Common terms in binary recurrences
JO - Acta Mathematica Universitatis Ostraviensis
PY - 2006
PB - University of Ostrava
VL - 14
IS - 1
SP - 57
EP - 61
AB - The purpose of this paper is to prove that the common terms of linear recurrences $M(2a,-1,0,b)$ and $N(2c,-1,0,d)$ have at most $2$ common terms if $p=2$, and have at most three common terms if $p>2$ where $D$ and $p$ are fixed positive integers and $p$ is a prime, such that neither $D$ nor $D+p$ is perfect square, further $a,b,c,d$ are nonzero integers satisfying the equations $a^2-Db^2=1$ and $c^2-(D+p)d^2=1$.
LA - eng
KW - Pell equation; binary sequences; common terms; second-order linear recursive sequence
UR - http://eudml.org/doc/35163
ER -

References

top
  1. Bennett M. A., On the number of solutions of simultaneous Pell equations, , J. Reine Angew. Math., 498 (1998), 173–199. (1998) Zbl1044.11011MR1629862
  2. Binz J., Elemente der Math, , 35 (1980), 155. (1980) 
  3. Hirsch M. D., 10.2307/2689536, , Math. Mag., 50 (1977), 262. (1977) Zbl0378.10006MR1572238DOI10.2307/2689536
  4. Kiss P., 10.1007/BF01897310, , Acta Math. Acad. Sci. Hungar. 40 (1–2), (1982), 119–123. (1982) Zbl0508.10006MR0685998DOI10.1007/BF01897310
  5. Kiss P., Közös elemek másodrendű rekurzív sorozatokban, . Az egri Ho Si Minh Tanárképző Főiskola füzetei XVI. (1982), 539–546. (1982) 
  6. Kiss P., Differences of the terms of linear recurrences, , Studia Scientiarum Mathematicarum Hungarica 20 (1985), 285–293. (1985) Zbl0628.10008MR0886031
  7. Liptai K., Közös elemek másodrendű rekurzív sorozatokban, , Acta. Acad. Pead. Agriensis, Sect. Math., 21 (1994), 47–54. (1994) 
  8. Mátyás F., On common terms of second order linear recurrences, , Mat. Sem. Not. (Kobe Univ. Jappan), 9 (1981), 89–97. (1981) MR0633999
  9. Mignotte M., 10.1016/0304-3975(78)90043-9, , Theoretical Comput. Sci, 7 (1978), 117–122. (1978) MR0498356DOI10.1016/0304-3975(78)90043-9
  10. Mordell L. J., Diophantine equations, , Acad. Press, London, (1969), 270. (1969) Zbl0188.34503MR0249355
  11. Revuz G., Equations deiphanties exponentielles, , Bull. Soc. Math. France, Mém., 37 (1974), 139–156. (1974) MR0369249
  12. Schlickewei H. P., Schmidt W. M., Linear equations in members of recurrence sequences, , Ann. Scuola Norm. Sup. Pisa Cl. Sci. 20 (1993), 219–246. (1993) Zbl0803.11010MR1233637
  13. Stewart C. L., On divisors of terms of linear recurrence sequences, , J. Reine Angew, Math., 333 (1982), 12–31. (1982) Zbl0475.10009MR0660783

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.