On a set of asymptotic densities

Pavel Jahoda; Monika Jahodová

Acta Mathematica Universitatis Ostraviensis (2008)

  • Volume: 16, Issue: 1, page 21-30
  • ISSN: 1804-1388

Abstract

top
Let = { p 1 , p 2 , , p i , } be the set of prime numbers (or more generally a set of pairwise co-prime elements). Let us denote A p a , b = { p a n + b m n { 0 } ; m , p does not divide m } , where a , b { 0 } . Then for arbitrary finite set B , B holds d p i B A p i a i , b i = p i B d A p i a i , b i , and d A p i a i , b i = 1 p i b i 1 - 1 p i 1 - 1 p i a i . If we denote A = 1 p b 1 - 1 p 1 - 1 p a p , a , b { 0 } , where is the set of all prime numbers, then for closure of set A holds cl A = A B { 0 , 1 } , where B = 1 p b 1 - 1 p p , b { 0 } .

How to cite

top

Jahoda, Pavel, and Jahodová, Monika. "On a set of asymptotic densities." Acta Mathematica Universitatis Ostraviensis 16.1 (2008): 21-30. <http://eudml.org/doc/35173>.

@article{Jahoda2008,
abstract = {Let $\mathbb \{P\} = \lbrace p_1, p_2, \dots , p_i, \dots \rbrace $ be the set of prime numbers (or more generally a set of pairwise co-prime elements). Let us denote $A_p^\{a,b\} = \lbrace p^\{an+b\}m \mid n \in \mathbb \{N\} \cup \lbrace 0\rbrace ;m \in \mathbb \{N\}, p \mathrm \{\, does \, not \, divide \,\} m \rbrace $, where $a \in \mathbb \{N\}, b \in \mathbb \{N\} \cup \lbrace 0\rbrace $. Then for arbitrary finite set $B$, $B \subset \mathbb \{P\}$ holds \[d\left(\bigcap \_\{p\_i \in B\} A\_\{p\_i\}^\{a\_i,b\_i\} \right) = \prod \_\{p\_i \in B\} d \left(A\_\{p\_i\}^\{a\_i,b\_i\}\right),\] and \[d \left(A\_\{p\_i\}^\{a\_i,b\_i\}\right) = \frac\{\frac\{1\}\{p\_\{i\}^\{b\_i\}\}\left(1 - \frac\{1\}\{p\_i\}\right)\}\{1 - \frac\{1\}\{p\_\{i\}^\{a\_i\}\}\}.\] If we denote \[A = \left\lbrace \frac\{\frac\{1\}\{p^b\}\left(1 - \frac\{1\}\{p\}\right)\}\{1 - \frac\{1\}\{p^a\}\} \mid p \in \mathbb \{P\}, a \in \mathbb \{N\}, b \in \mathbb \{N\} \cup \lbrace 0\rbrace \right\rbrace ,\] where $\mathbb \{P\}$ is the set of all prime numbers, then for closure of set $A$ holds \[\mathop \{\rm cl\}A = A \cup B \cup \lbrace 0, 1\rbrace ,\] where $B = \left\lbrace \frac\{1\}\{p^b\}\left(1 - \frac\{1\}\{p\}\right) \mid p \in \mathbb \{P\}, b \in \mathbb \{N\} \cup \lbrace 0\rbrace \right\rbrace $.},
author = {Jahoda, Pavel, Jahodová, Monika},
journal = {Acta Mathematica Universitatis Ostraviensis},
keywords = {asymptotic density; density; asymptotic density; density},
language = {eng},
number = {1},
pages = {21-30},
publisher = {University of Ostrava},
title = {On a set of asymptotic densities},
url = {http://eudml.org/doc/35173},
volume = {16},
year = {2008},
}

TY - JOUR
AU - Jahoda, Pavel
AU - Jahodová, Monika
TI - On a set of asymptotic densities
JO - Acta Mathematica Universitatis Ostraviensis
PY - 2008
PB - University of Ostrava
VL - 16
IS - 1
SP - 21
EP - 30
AB - Let $\mathbb {P} = \lbrace p_1, p_2, \dots , p_i, \dots \rbrace $ be the set of prime numbers (or more generally a set of pairwise co-prime elements). Let us denote $A_p^{a,b} = \lbrace p^{an+b}m \mid n \in \mathbb {N} \cup \lbrace 0\rbrace ;m \in \mathbb {N}, p \mathrm {\, does \, not \, divide \,} m \rbrace $, where $a \in \mathbb {N}, b \in \mathbb {N} \cup \lbrace 0\rbrace $. Then for arbitrary finite set $B$, $B \subset \mathbb {P}$ holds \[d\left(\bigcap _{p_i \in B} A_{p_i}^{a_i,b_i} \right) = \prod _{p_i \in B} d \left(A_{p_i}^{a_i,b_i}\right),\] and \[d \left(A_{p_i}^{a_i,b_i}\right) = \frac{\frac{1}{p_{i}^{b_i}}\left(1 - \frac{1}{p_i}\right)}{1 - \frac{1}{p_{i}^{a_i}}}.\] If we denote \[A = \left\lbrace \frac{\frac{1}{p^b}\left(1 - \frac{1}{p}\right)}{1 - \frac{1}{p^a}} \mid p \in \mathbb {P}, a \in \mathbb {N}, b \in \mathbb {N} \cup \lbrace 0\rbrace \right\rbrace ,\] where $\mathbb {P}$ is the set of all prime numbers, then for closure of set $A$ holds \[\mathop {\rm cl}A = A \cup B \cup \lbrace 0, 1\rbrace ,\] where $B = \left\lbrace \frac{1}{p^b}\left(1 - \frac{1}{p}\right) \mid p \in \mathbb {P}, b \in \mathbb {N} \cup \lbrace 0\rbrace \right\rbrace $.
LA - eng
KW - asymptotic density; density; asymptotic density; density
UR - http://eudml.org/doc/35173
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.