The tame degree and related invariants of non-unique factorizations
Acta Mathematica Universitatis Ostraviensis (2008)
- Volume: 16, Issue: 1, page 57-68
- ISSN: 1804-1388
Access Full Article
topAbstract
topHow to cite
topHalter-Koch, Franz. "The tame degree and related invariants of non-unique factorizations." Acta Mathematica Universitatis Ostraviensis 16.1 (2008): 57-68. <http://eudml.org/doc/35176>.
@article{Halter2008,
abstract = {Local tameness and the finiteness of the catenary degree are two crucial finiteness conditions in the theory of non-unique factorizations in monoids and integral domains. In this note, we refine the notion of local tameness and relate the resulting invariants with the usual tame degree and the $\omega $-invariant. Finally we present a simple monoid which fails to be locally tame and yet has nice factorization properties.},
author = {Halter-Koch, Franz},
journal = {Acta Mathematica Universitatis Ostraviensis},
keywords = {Non-unique factorizations; tame degree; atomic monoids; tame degree; non-unique factorizations; atomic monoids},
language = {eng},
number = {1},
pages = {57-68},
publisher = {University of Ostrava},
title = {The tame degree and related invariants of non-unique factorizations},
url = {http://eudml.org/doc/35176},
volume = {16},
year = {2008},
}
TY - JOUR
AU - Halter-Koch, Franz
TI - The tame degree and related invariants of non-unique factorizations
JO - Acta Mathematica Universitatis Ostraviensis
PY - 2008
PB - University of Ostrava
VL - 16
IS - 1
SP - 57
EP - 68
AB - Local tameness and the finiteness of the catenary degree are two crucial finiteness conditions in the theory of non-unique factorizations in monoids and integral domains. In this note, we refine the notion of local tameness and relate the resulting invariants with the usual tame degree and the $\omega $-invariant. Finally we present a simple monoid which fails to be locally tame and yet has nice factorization properties.
LA - eng
KW - Non-unique factorizations; tame degree; atomic monoids; tame degree; non-unique factorizations; atomic monoids
UR - http://eudml.org/doc/35176
ER -
References
top- Anderson D. F., Elasticity of factorizations in integral domains: a survey, . Factorization in Integral Domains, D. D. Anderson (ed.), pp. 1–29, Marcel Dekker, 1997 Zbl0903.13008MR1460767
- Gao W., Geroldinger A., On products of k-atoms, . Monatsh. Math., to appear. Zbl1184.20051MR2488859
- Geroldinger A., Halter-Koch F., Non-Unique Factorizations, . Algebraic, Combinatorial and Analytic Theory. Chapman & Hall/CRC, 2006. Zbl1117.13004MR2194494
- Geroldinger A., Halter-Koch F., Non-Unique Factorizations: A Survey, . Multiplicative Ideal Theory in Commutative Algebra, J.W. Brewer, S. Glaz, W. Heinzer, and B. Olberding (eds.), pp. 217–226, Springer 2006. Zbl1117.13004MR2265810
- Geroldinger A., Hassler W., 10.1016/j.jpaa.2007.10.020, , J. Pure Appl. Algebra 212 (2008), 1509–1524. Zbl1133.20047MR2391663DOI10.1016/j.jpaa.2007.10.020
- Geroldinger A., Hassler W., 10.1016/j.jalgebra.2007.11.025, , J. Algebra 319 (2008), 3419–3463. Zbl1195.13022MR2408326DOI10.1016/j.jalgebra.2007.11.025
- Halter-Koch F., Non-Unique factorizations of algebraic integers, , Funct. Approx., to appear. Zbl1217.11096MR2490087
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.