Linearization regions for a confidence ellipsoid in singular nonlinear regression models
Lubomír Kubáček; Eva Tesaříková
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (2009)
- Volume: 48, Issue: 1, page 73-82
- ISSN: 0231-9721
Access Full Article
topAbstract
topHow to cite
topKubáček, Lubomír, and Tesaříková, Eva. "Linearization regions for a confidence ellipsoid in singular nonlinear regression models." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 48.1 (2009): 73-82. <http://eudml.org/doc/35179>.
@article{Kubáček2009,
abstract = {A construction of confidence regions in nonlinear regression models is difficult mainly in the case that the dimension of an estimated vector parameter is large. A singularity is also a problem. Therefore some simple approximation of an exact confidence region is welcome. The aim of the paper is to give a small modification of a confidence ellipsoid constructed in a linearized model which is sufficient under some conditions for an approximation of the exact confidence region.},
author = {Kubáček, Lubomír, Tesaříková, Eva},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {Nonlinear regression model; confidence region; singularity; nonlinear regression model; confidence region; singularity},
language = {eng},
number = {1},
pages = {73-82},
publisher = {Palacký University Olomouc},
title = {Linearization regions for a confidence ellipsoid in singular nonlinear regression models},
url = {http://eudml.org/doc/35179},
volume = {48},
year = {2009},
}
TY - JOUR
AU - Kubáček, Lubomír
AU - Tesaříková, Eva
TI - Linearization regions for a confidence ellipsoid in singular nonlinear regression models
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 2009
PB - Palacký University Olomouc
VL - 48
IS - 1
SP - 73
EP - 82
AB - A construction of confidence regions in nonlinear regression models is difficult mainly in the case that the dimension of an estimated vector parameter is large. A singularity is also a problem. Therefore some simple approximation of an exact confidence region is welcome. The aim of the paper is to give a small modification of a confidence ellipsoid constructed in a linearized model which is sufficient under some conditions for an approximation of the exact confidence region.
LA - eng
KW - Nonlinear regression model; confidence region; singularity; nonlinear regression model; confidence region; singularity
UR - http://eudml.org/doc/35179
ER -
References
top- Bates, D. M., Watts, D. G., Relative curvature measures of nonlinearity, J. Roy. Stat. Soc. B 42 (1980), 1–25. (1980) Zbl0455.62028MR0567196
- Fišerová, E., Kubáček, L., Kunderová, P., Linear Statistical Models, Regularity and Singularities, Academia, Praha, 2007. (2007)
- Kubáček, L., Kubáčková, L., Regression models with a weak nonlinearity, Technical report Nr. 1998.1, Universität Stuttgart, 1998, 1–67. (1998)
- Kubáček, L., Kubáčková, L., Statistics and Metrology, Vyd. Univ. Palackého, Olomouc, 2000 (in Czech). (2000)
- Kubáček, L., Tesaříková, E., Linearization region for confidence ellispoids, Acta Univ. Palacki. Olomuc., Fac. rer. nat., Math. 47 (2008), 101–113. (2008) MR2482720
- Pázman, A., Nonlinear Statistical Models, Kluwer Academic Publisher, Dordrecht–Boston–London and Ister Science Press, Bratislava, 1993. (1993) MR1254661
- Rao, C. R., Mitra, S. K., Generalized Inverse of Matrices and its Applications, J. Wiley, New York–London–Sydney–Toronto, 1971. (1971) Zbl0236.15005MR0338013
- Scheffé, H., The Analysis of Variance, J. Wiley, New York–London–Sydney, 1967 (fifth printing). (1967) MR1673563
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.