Basic pseudorings
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (2009)
- Volume: 48, Issue: 1, page 25-31
- ISSN: 0231-9721
Access Full Article
topAbstract
topHow to cite
topChajda, Ivan, and Kolařík, Miroslav. "Basic pseudorings." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 48.1 (2009): 25-31. <http://eudml.org/doc/35186>.
@article{Chajda2009,
abstract = {The concept of a basic pseudoring is introduced. It is shown that every orthomodular lattice can be converted into a basic pseudoring by using of the term operation called Sasaki projection. It is given a mutual relationship between basic algebras and basic pseudorings. There are characterized basic pseudorings which can be converted into othomodular lattices.},
author = {Chajda, Ivan, Kolařík, Miroslav},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {Basic algebra; basic pseudoring; orthomodular lattice; basic algebra; basic pseudoring; orthomodular lattice},
language = {eng},
number = {1},
pages = {25-31},
publisher = {Palacký University Olomouc},
title = {Basic pseudorings},
url = {http://eudml.org/doc/35186},
volume = {48},
year = {2009},
}
TY - JOUR
AU - Chajda, Ivan
AU - Kolařík, Miroslav
TI - Basic pseudorings
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 2009
PB - Palacký University Olomouc
VL - 48
IS - 1
SP - 25
EP - 31
AB - The concept of a basic pseudoring is introduced. It is shown that every orthomodular lattice can be converted into a basic pseudoring by using of the term operation called Sasaki projection. It is given a mutual relationship between basic algebras and basic pseudorings. There are characterized basic pseudorings which can be converted into othomodular lattices.
LA - eng
KW - Basic algebra; basic pseudoring; orthomodular lattice; basic algebra; basic pseudoring; orthomodular lattice
UR - http://eudml.org/doc/35186
ER -
References
top- Beran, L., Orthomodular Lattices, Reidel Publ., Dordrecht, 1985. (1985) Zbl0583.06008MR0784029
- Birkhoff, G., Lattice Theory, Publ. AMS, Providence, 1967. (1967) Zbl0153.02501MR0227053
- Chajda, I., Halaš, R., Kühr, J., Semilattice Structures, Heldermann Verlag, Lemgo, 2007. (2007) Zbl1117.06001MR2326262
- Chajda, I., Kolařík, M., Independence of axiom system of basic algebras, Soft Computing 13, 1 (2009), 41–43. (2009) Zbl1178.06007
- Chajda, I., Länger, H., Ring-like structures corresponding to MV-algebras via symmetrical difference, Sitzungsberichte ÖAW, Math.–Naturw. Kl. Abt. II 213 (2004), 33–41. (2004) MR2251532
- Dorfer, G., Dvurečenskij, A., Länger H., Symmetric difference in orthomodular lattices, Math. Slovaca 46 (1996), 435–444. (1996) MR1451034
- Dorninger, D., Länger, H., Maczyński, M., The logic induced by a system of homomorphisms and its various algebraic characterizations, Demonstratio Math. 30 (1997), 215–232. (1997) MR1446613
- Dorninger, D., Länger, H., Maczyński, M., On ring-like structures occuring in axiomatic quantum mechanics, Sitzungsberichte ÖAW, Math.–Naturw. Kl. Abt. II 206 (1997), 279–289. (1997) MR1632939
- Dorninger, D., Länger, H., Maczyński, M., Lattice properties of ring-like quantum logics, Intern. J. of Theor. Physics 39 (2000), 1015–1026. (2000) MR1779170
- Shang, Y., Ring-like structures corresponding to pseudo MV-algebras, Soft Computing 13, 1 (2009), 71–76. (2009) Zbl1165.06005
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.