Singular problems on the half-line
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (2009)
- Volume: 48, Issue: 1, page 109-128
- ISSN: 0231-9721
Access Full Article
topAbstract
topHow to cite
topRachůnková, Irena, and Tomeček, Jan. "Singular problems on the half-line." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 48.1 (2009): 109-128. <http://eudml.org/doc/35191>.
@article{Rachůnková2009,
abstract = {The paper investigates singular nonlinear problems arising in hydrodynamics. In particular, it deals with the problem on the half-line of the form \[(p(t)u^\{\prime \}(t))^\{\prime \} = p(t)f(u(t)),\]\[u^\{\prime \}(0) = 0,\quad u(\infty ) = L.\]
The existence of a strictly increasing solution (a homoclinic solution) of this problem is proved by the dynamical systems approach and the lower and upper functions method.},
author = {Rachůnková, Irena, Tomeček, Jan},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {Singular ordinary differential equation of the second order; lower and upper functions; time singularities; unbounded domain; homoclinic solution; singular ordinary differential equation of the second order; lower and upper functions; time singularities; unbounded domain; homoclinic solutions},
language = {eng},
number = {1},
pages = {109-128},
publisher = {Palacký University Olomouc},
title = {Singular problems on the half-line},
url = {http://eudml.org/doc/35191},
volume = {48},
year = {2009},
}
TY - JOUR
AU - Rachůnková, Irena
AU - Tomeček, Jan
TI - Singular problems on the half-line
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 2009
PB - Palacký University Olomouc
VL - 48
IS - 1
SP - 109
EP - 128
AB - The paper investigates singular nonlinear problems arising in hydrodynamics. In particular, it deals with the problem on the half-line of the form \[(p(t)u^{\prime }(t))^{\prime } = p(t)f(u(t)),\]\[u^{\prime }(0) = 0,\quad u(\infty ) = L.\]
The existence of a strictly increasing solution (a homoclinic solution) of this problem is proved by the dynamical systems approach and the lower and upper functions method.
LA - eng
KW - Singular ordinary differential equation of the second order; lower and upper functions; time singularities; unbounded domain; homoclinic solution; singular ordinary differential equation of the second order; lower and upper functions; time singularities; unbounded domain; homoclinic solutions
UR - http://eudml.org/doc/35191
ER -
References
top- Berestycki, H., Lions, P. L., Peletier, L. A., An ODE approach to the existence of positive solutions for semilinear problems in , Indiana University Mathematics Journal 30, 1 (1981), 141–157. (1981) MR0600039
- Bonheure, D., Gomes, J. M., Sanchez, L., Positive solutions of a second–order singular ordinary differential equation, Nonlinear Analysis 61 (2005), 1383–1399. (2005) Zbl1109.34310MR2135816
- Dell’Isola, F., Gouin, H., Rotoli, G., Nucleation of spherical shell-like interfaces by second gradient theory: numerical simulations, Eur. J. Mech B/Fluids 15 (1996), 545–568. (1996)
- Gouin, H., Rotoli, G., An analytical approximation of density profile and surface tension of microscopic bubbles for Van der Waals fluids, Mech. Research Communic. 24 (1997), 255–260. (1997) Zbl0899.76064
- Kitzhofer, G., Koch, O., Lima, P., Weinmüller, E., Efficient numerical solution of the density profile equation in hydrodynamics, J. Sci. Comput. 32, 3 (2007), 411–424. (2007) Zbl1179.76062MR2335787
- Koch, O., Kofler, P., Weinmüller, E., Initial value problems for systems of ordinary first and second order differential equations with a singularity of the first kind, Analysis 21 (2001), 373–389. (2001) Zbl1029.34002MR1867622
- Lima, P. M., Chemetov, N. V., Konyukhova, N. B., Sukov, A. I., Analytical–numerical investigation of bubble-type solutions of nonlinear singular problems, J. Comp. Appl. Math. 189 (2006), 260–273. (2006) Zbl1100.65066MR2202978
- Rachůnková, I., Koch, O., Pulverer, G., Weinmüller, E., On a singular boundary value problem arising in the theory of shallow membrane caps, J. Math. Anal. Appl. 332 (2007), 532–541. (2007) Zbl1118.34013MR2319681
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.