On a generalization of Helmholtz conditions

Radka Malíková

Acta Mathematica Universitatis Ostraviensis (2009)

  • Volume: 17, Issue: 1, page 11-21
  • ISSN: 1804-1388

Abstract

top
Helmholtz conditions in the calculus of variations are necessary and sufficient conditions for a system of differential equations to be variational ‘as it stands’. It is known that this property geometrically means that the dynamical form representing the equations can be completed to a closed form. We study an analogous property for differential forms of degree 3, so-called Helmholtz-type forms in mechanics ( n = 1 ), and obtain a generalization of Helmholtz conditions to this case.

How to cite

top

Malíková, Radka. "On a generalization of Helmholtz conditions." Acta Mathematica Universitatis Ostraviensis 17.1 (2009): 11-21. <http://eudml.org/doc/35194>.

@article{Malíková2009,
abstract = {Helmholtz conditions in the calculus of variations are necessary and sufficient conditions for a system of differential equations to be variational ‘as it stands’. It is known that this property geometrically means that the dynamical form representing the equations can be completed to a closed form. We study an analogous property for differential forms of degree 3, so-called Helmholtz-type forms in mechanics ($n=1$), and obtain a generalization of Helmholtz conditions to this case.},
author = {Malíková, Radka},
journal = {Acta Mathematica Universitatis Ostraviensis},
keywords = {Lagrangian; Euler-Lagrange form; dynamical form; Helmholtz-type form; Helmholtz form; Helmholtz conditions; Lagrangian; Euler-Lagrange form; dynamical form; Helmholtz-type form; Helmholtz conditions},
language = {eng},
number = {1},
pages = {11-21},
publisher = {University of Ostrava},
title = {On a generalization of Helmholtz conditions},
url = {http://eudml.org/doc/35194},
volume = {17},
year = {2009},
}

TY - JOUR
AU - Malíková, Radka
TI - On a generalization of Helmholtz conditions
JO - Acta Mathematica Universitatis Ostraviensis
PY - 2009
PB - University of Ostrava
VL - 17
IS - 1
SP - 11
EP - 21
AB - Helmholtz conditions in the calculus of variations are necessary and sufficient conditions for a system of differential equations to be variational ‘as it stands’. It is known that this property geometrically means that the dynamical form representing the equations can be completed to a closed form. We study an analogous property for differential forms of degree 3, so-called Helmholtz-type forms in mechanics ($n=1$), and obtain a generalization of Helmholtz conditions to this case.
LA - eng
KW - Lagrangian; Euler-Lagrange form; dynamical form; Helmholtz-type form; Helmholtz form; Helmholtz conditions; Lagrangian; Euler-Lagrange form; dynamical form; Helmholtz-type form; Helmholtz conditions
UR - http://eudml.org/doc/35194
ER -

References

top
  1. Anderson, I., The Variational Bicomplex, (Technical Report, Utah State University, 1989) (1989) 
  2. Crampin, M., Prince, G. E., Thompson, G., 10.1088/0305-4470/17/7/011, J. Phys. A: Math. Gen. 17 (1984) 1437–1447 (1984) MR0748776DOI10.1088/0305-4470/17/7/011
  3. Dedecker, P., Tulczyjew, W. M., Spectral sequences and the inverse problem of the calculus of variation, Proc. Internat. Coll. on Diff. Geom. Methods in Math. Phys., Salamanca 1979, In: Lecture Notes in Math. 836 (Berlin: Springer, 1980) 498–503 (1980) MR0607719
  4. Helmholtz, H., Über der physikalische Bedeutung des Princips der kleinsten Wirkung, J. Reine Angew. Math. 100 (1887) 137–166 (1887) 
  5. Klapka, L., Euler-Lagrange expressions and closed two-forms in higher order mechanics, In: Geometrical Methods in Physics, Proc. Conf. on Diff. Geom. and Appl. Vol. 2, Nové Město na Moravě, 1983, Krupka, D., Ed. (J. E. Purkyně Univ. Brno, Czechoslovakia, 1984) 149–153 (1984) Zbl0552.70011MR0793205
  6. Krupka, D., Lepagean forms in higher order variational theory, In: Modern Developments in Analytical Mechanics I: Geometrical Dynamics, Proc. IUTAM-ISIMM Symposium, Torino, Italy, 1982 (Accad. Sci. Torino, Torino, 1983) 197–238 (1983) Zbl0572.58003MR0773488
  7. Krupka, D., Some Geometric Aspects of Variational Problems in Fibered Manifolds, Folia Fac. Sci. Nat. Univ. Purk. Brunensis, Physica 14, Brno, Czechoslovakia, 1973; ArXiv:math-ph/0110005 (1973) 
  8. Krupka, D., Variational Sequence on Finite Order Jet Spaces, In: Differential Geometry and its Applications, Proc. Conf., Brno, Czechoslovakia, 1989, Janyška, J. and Krupka, D., Eds. (World Scientific, Singapore, 1990) 236–254 (1990) MR1062026
  9. Krupka, D., 10.1007/s005260050079, Calc. Var. 5, 557–583(1997) (1997) Zbl0892.58001MR1473308DOI10.1007/s005260050079
  10. Krupka, D., Global variational principles: Foundations and current problems, In: Global Analysis and Applied Mathematics (AIP Conference Proceedings 729, American Institute of Physics, 2004) 3–18 (2004) Zbl1121.58019MR2215681
  11. Krupka, D., Šeděnková, J., Variational Sequences and Lepage Forms, In: Proceedings of Conference Differential Geometry and its Applications, Prague, 2004, Ed. by Bureš, J., Kowalski, O., Krupka, D., Slovák, J. (Charles Univ., Prague, Czech Republic, 2005), pp. 605–615 (2005) Zbl1115.35349
  12. Krupka, D., Krupková, O., Prince, G., Sarlet, W., Contact symmetries of the Helmholtz form, Differential Geometry and its Applications 25 (2007) 518–542 (2007) MR2351428
  13. Krupková, O., Lepagean 2 -Forms in Higher Order Hamiltonian Mechanics, I. Regularity, Arch. Math. (Brno) 22 (1986) 97–120 (1986) MR0868124
  14. Krupková, O., The Geometry of Ordinary Variational Equations, Lecture Notes in Math. 1678 (Springer, Berlin, 1997) (1997) MR1484970
  15. Krupková, O., Prince, G.E., Lepage Forms, Closed 2 -Forms and Second-Order Ordinary Differential Equations, Russian Mathematics (Iz. VUZ), 2007, Vol. 51, No. 12, pp. 1–16 (2007) MR2402204
  16. Krupková, O., Prince, G.E., Second Order Ordinary Differential Equations in Jet Bundles and the Inverse Problem of the Calculus of Variations, In: Handbook of Global Analysis (Elsevier, 2008) 841–908 (2008) Zbl1236.58027MR2389647
  17. Lepage, Th., Sur les champs géodésiques du Calcul des Variations, Bull. Acad. Roy. Belg., Cl. des Sciences 22 (1936) 716–729 (1936) Zbl0016.26201
  18. Saunders, D. J., The Geometry of Jet Bundles, (Cambridge University Press, 1989) (1989) Zbl0665.58002MR0989588
  19. Takens, F., A Global Version of the Inverse Problem of the Calculus of Variations, J. Diff. Geom. 14, 543–562(1979) (1979) Zbl0463.58015MR0600611

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.