Bounds and computational results for exponential sums related to cusp forms
Anne-Maria Ernvall-Hytönen; Arto Lepistö
Acta Mathematica Universitatis Ostraviensis (2009)
- Volume: 17, Issue: 1, page 81-90
- ISSN: 1804-1388
Access Full Article
topAbstract
topHow to cite
topReferences
top- PARI/GP, Version @vers, 2006. available from http://pari.math.u-bordeaux.fr/ (2006)
- Apostol, T. M., Modular functions and Dirichlet series in number theory, volume 41 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition, 1990 (1990) Zbl0697.10023MR1027834
- Ernvall-Hytönen, A.-M., A relation between Fourier coefficients of holomorphic cusp forms and exponential sums, to appear in Publications de l’Institut Mathematique (Beograd)
- Ernvall-Hytönen, A.-M., Karppinen, K., On short exponential sums involving Fourier coefficients of holomorphic cusp forms, IntṀath. Res. Not. IMRN, (10) : Art. ID. rnn022, 44, 2008 (2008) Zbl1247.11106MR2429240
- Ernvall-Hytönen, A.-M., An improvement on the upper bound of exponential sums of holomorphic cusp forms, submitted
- Ivić, A., Large values of certain number-theoretic error terms, Acta Arith., 56(2) : 135–159, 1990 (1990) MR1075641
- Jutila, M., On exponential sums involving the Ramanujan function, Proc. Indian Acad. Sci. Math. Sci., 97(1-3) : 157–166 (1988), 1987 (1988) MR0983611
- Koecher, M., Krieg, A., Elliptische Funktionen und Modulformen, Springer-Verlag, Berlin, 1998 (1998) Zbl0895.11001MR1711085
- Rankin, R. A., Contributions to the theory of Ramanujan’s function $\tau (n)$ and similar arithmetical functions ii. The order of Fourier coefficients of integral modular forms, Proc. Cambridge Philos. Soc., 35 : 357–372, 1939 (1939)
- Wilton, J. R., A note on Ramanujan’s arithmetical function $\tau (n)$, Proc. Cambridge Philos. Soc., 25(II) : 121–129, 1929 (1929)