Bounds and computational results for exponential sums related to cusp forms

Anne-Maria Ernvall-Hytönen; Arto Lepistö

Acta Mathematica Universitatis Ostraviensis (2009)

  • Volume: 17, Issue: 1, page 81-90
  • ISSN: 1804-1388

Abstract

top
The aim of this paper is to present some computer data suggesting the correct size of bounds for exponential sums of Fourier coefficients of holomorphic cusp forms.

How to cite

top

Ernvall-Hytönen, Anne-Maria, and Lepistö, Arto. "Bounds and computational results for exponential sums related to cusp forms." Acta Mathematica Universitatis Ostraviensis 17.1 (2009): 81-90. <http://eudml.org/doc/35199>.

@article{Ernvall2009,
abstract = {The aim of this paper is to present some computer data suggesting the correct size of bounds for exponential sums of Fourier coefficients of holomorphic cusp forms.},
author = {Ernvall-Hytönen, Anne-Maria, Lepistö, Arto},
journal = {Acta Mathematica Universitatis Ostraviensis},
keywords = {cusp forms; exponential sums; Ramanujan tau function; analytic computations; cusp forms; exponential sums; Ramanujan tau function; analytic computations},
language = {eng},
number = {1},
pages = {81-90},
publisher = {University of Ostrava},
title = {Bounds and computational results for exponential sums related to cusp forms},
url = {http://eudml.org/doc/35199},
volume = {17},
year = {2009},
}

TY - JOUR
AU - Ernvall-Hytönen, Anne-Maria
AU - Lepistö, Arto
TI - Bounds and computational results for exponential sums related to cusp forms
JO - Acta Mathematica Universitatis Ostraviensis
PY - 2009
PB - University of Ostrava
VL - 17
IS - 1
SP - 81
EP - 90
AB - The aim of this paper is to present some computer data suggesting the correct size of bounds for exponential sums of Fourier coefficients of holomorphic cusp forms.
LA - eng
KW - cusp forms; exponential sums; Ramanujan tau function; analytic computations; cusp forms; exponential sums; Ramanujan tau function; analytic computations
UR - http://eudml.org/doc/35199
ER -

References

top
  1. PARI/GP, Version @vers, 2006. available from http://pari.math.u-bordeaux.fr/ (2006) 
  2. Apostol, T. M., Modular functions and Dirichlet series in number theory, volume 41 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition, 1990 (1990) Zbl0697.10023MR1027834
  3. Ernvall-Hytönen, A.-M., A relation between Fourier coefficients of holomorphic cusp forms and exponential sums, to appear in Publications de l’Institut Mathematique (Beograd) 
  4. Ernvall-Hytönen, A.-M., Karppinen, K., On short exponential sums involving Fourier coefficients of holomorphic cusp forms, IntṀath. Res. Not. IMRN, (10) : Art. ID. rnn022, 44, 2008 (2008) Zbl1247.11106MR2429240
  5. Ernvall-Hytönen, A.-M., An improvement on the upper bound of exponential sums of holomorphic cusp forms, submitted 
  6. Ivić, A., Large values of certain number-theoretic error terms, Acta Arith., 56(2) : 135–159, 1990 (1990) MR1075641
  7. Jutila, M., On exponential sums involving the Ramanujan function, Proc. Indian Acad. Sci. Math. Sci., 97(1-3) : 157–166 (1988), 1987 (1988) MR0983611
  8. Koecher, M., Krieg, A., Elliptische Funktionen und Modulformen, Springer-Verlag, Berlin, 1998 (1998) Zbl0895.11001MR1711085
  9. Rankin, R. A., Contributions to the theory of Ramanujan’s function τ ( n ) and similar arithmetical functions ii. The order of Fourier coefficients of integral modular forms, Proc. Cambridge Philos. Soc., 35 : 357–372, 1939 (1939) 
  10. Wilton, J. R., A note on Ramanujan’s arithmetical function τ ( n ) , Proc. Cambridge Philos. Soc., 25(II) : 121–129, 1929 (1929) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.