Timelike B 2 -slant helices in Minkowski space E 1 4

Ahmad T. Ali; Rafael López

Archivum Mathematicum (2010)

  • Volume: 046, Issue: 1, page 39-46
  • ISSN: 0044-8753

Abstract

top
We consider a unit speed timelike curve α in Minkowski 4-space 𝐄 1 4 and denote the Frenet frame of α by { 𝐓 , 𝐍 , 𝐁 1 , 𝐁 2 } . We say that α is a generalized helix if one of the unit vector fields of the Frenet frame has constant scalar product with a fixed direction U of 𝐄 1 4 . In this work we study those helices where the function 𝐁 2 , U is constant and we give different characterizations of such curves.

How to cite

top

Ali, Ahmad T., and López, Rafael. "Timelike $B_2$-slant helices in Minkowski space $\operatorname{E}_1^4$." Archivum Mathematicum 046.1 (2010): 39-46. <http://eudml.org/doc/37652>.

@article{Ali2010,
abstract = {We consider a unit speed timelike curve $\alpha $ in Minkowski 4-space $\{\mathbf \{E\}\}_1^4$ and denote the Frenet frame of $\alpha $ by $\lbrace \{\mathbf \{T\}\}, \{\mathbf \{N\}\}, \{\mathbf \{B\}\}_1, \{\mathbf \{B\}\}_2\rbrace $. We say that $\alpha $ is a generalized helix if one of the unit vector fields of the Frenet frame has constant scalar product with a fixed direction $U$ of $\{\mathbf \{E\}\}_1^4$. In this work we study those helices where the function $\langle \{\mathbf \{B\}\}_2,U\rangle $ is constant and we give different characterizations of such curves.},
author = {Ali, Ahmad T., López, Rafael},
journal = {Archivum Mathematicum},
keywords = {Minkowski space; timelike curve; Frenet equations; slant helix; Minkowski space; timelike curve; Frenet equations; slant helix},
language = {eng},
number = {1},
pages = {39-46},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Timelike $B_2$-slant helices in Minkowski space $\operatorname\{E\}_1^4$},
url = {http://eudml.org/doc/37652},
volume = {046},
year = {2010},
}

TY - JOUR
AU - Ali, Ahmad T.
AU - López, Rafael
TI - Timelike $B_2$-slant helices in Minkowski space $\operatorname{E}_1^4$
JO - Archivum Mathematicum
PY - 2010
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 046
IS - 1
SP - 39
EP - 46
AB - We consider a unit speed timelike curve $\alpha $ in Minkowski 4-space ${\mathbf {E}}_1^4$ and denote the Frenet frame of $\alpha $ by $\lbrace {\mathbf {T}}, {\mathbf {N}}, {\mathbf {B}}_1, {\mathbf {B}}_2\rbrace $. We say that $\alpha $ is a generalized helix if one of the unit vector fields of the Frenet frame has constant scalar product with a fixed direction $U$ of ${\mathbf {E}}_1^4$. In this work we study those helices where the function $\langle {\mathbf {B}}_2,U\rangle $ is constant and we give different characterizations of such curves.
LA - eng
KW - Minkowski space; timelike curve; Frenet equations; slant helix; Minkowski space; timelike curve; Frenet equations; slant helix
UR - http://eudml.org/doc/37652
ER -

References

top
  1. Barros, M., 10.1090/S0002-9939-97-03692-7, Proc. Amer. Math. Soc. 125 (1997), 1503–1509. (1997) Zbl0876.53035MR1363411DOI10.1090/S0002-9939-97-03692-7
  2. Erdoǧan, M., Yilmaz, G., Null generalized and slant helices in 4-dimensional Lorentz-Minkowski space, Int. J. Contemp. Math. Sci. 3 (2008), 1113–1120. (2008) Zbl1160.53331MR2477940
  3. Ferrandez, A., Gimenez, A., Luca, P., 10.1142/S0217751X01005821, Int. J. Mod. Phys. A 16 (2001), 4845–4863. (2001) MR1873162DOI10.1142/S0217751X01005821
  4. Gluck, H., 10.2307/2313974, Amer. Math. Monthly 73 (1996), 699–704. (1996) MR0198355DOI10.2307/2313974
  5. Izumiya, S., Takeuchi, N., New special curves and developable surfaces, Turkish J. Math. 28 (2004), 531–537. (2004) Zbl1081.53003MR2062560
  6. Kocayiǧit, H., Önder, M., Timelike curves of constant slope in Minkowski space 𝐄 1 4 , J. Science Techn. Beykent Univ. 1 (2007), 311–318. (2007) 
  7. Kula, L., Yayli, Y., 10.1016/j.amc.2004.09.078, Appl. Math. Comput. 169 (2005), 600–607. (2005) Zbl1083.53006MR2171171DOI10.1016/j.amc.2004.09.078
  8. Millman, R. S., Parker, G. D., Elements of differential geometry, Prentice-Hall Inc., Englewood Cliffs, N. J., 1977. (1977) Zbl0425.53001MR0442832
  9. Önder, M., Kazaz, M., Kocayiǧit, H., Kilic, O., B 2 -slant helix in Euclidean 4-space E 4 , Int. J. Contemp. Math. Sci. 3 (29) (2008), 1433–1440. (2008) Zbl1175.14019MR2514022
  10. O’Neill, B., Semi-Riemannian geometry. With applications to relativity. Pure and Applied Mathematics, vol. 103, Academic Press, Inc., New York, 1983. (1983) MR0719023
  11. Petrovic-Torgasev, M., Sucurovic, E., W-curves in Minkowski spacetime, Novi Sad J. Math. 32 (2002), 55–65. (2002) MR1949817
  12. Scofield, P. D., 10.2307/2974768, Amer. Math. Monthly 102 (1995), 531–537. (1995) Zbl0881.53002MR1336639DOI10.2307/2974768
  13. Synge, J. L., Timelike helices in flat space-time, Proc. Roy. Irish Acad. Sect. A 65 (1967), 27–42. (1967) Zbl0152.45901MR0208976

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.