Timelike -slant helices in Minkowski space
Archivum Mathematicum (2010)
- Volume: 046, Issue: 1, page 39-46
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topAli, Ahmad T., and López, Rafael. "Timelike $B_2$-slant helices in Minkowski space $\operatorname{E}_1^4$." Archivum Mathematicum 046.1 (2010): 39-46. <http://eudml.org/doc/37652>.
@article{Ali2010,
abstract = {We consider a unit speed timelike curve $\alpha $ in Minkowski 4-space $\{\mathbf \{E\}\}_1^4$ and denote the Frenet frame of $\alpha $ by $\lbrace \{\mathbf \{T\}\}, \{\mathbf \{N\}\}, \{\mathbf \{B\}\}_1, \{\mathbf \{B\}\}_2\rbrace $. We say that $\alpha $ is a generalized helix if one of the unit vector fields of the Frenet frame has constant scalar product with a fixed direction $U$ of $\{\mathbf \{E\}\}_1^4$. In this work we study those helices where the function $\langle \{\mathbf \{B\}\}_2,U\rangle $ is constant and we give different characterizations of such curves.},
author = {Ali, Ahmad T., López, Rafael},
journal = {Archivum Mathematicum},
keywords = {Minkowski space; timelike curve; Frenet equations; slant helix; Minkowski space; timelike curve; Frenet equations; slant helix},
language = {eng},
number = {1},
pages = {39-46},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Timelike $B_2$-slant helices in Minkowski space $\operatorname\{E\}_1^4$},
url = {http://eudml.org/doc/37652},
volume = {046},
year = {2010},
}
TY - JOUR
AU - Ali, Ahmad T.
AU - López, Rafael
TI - Timelike $B_2$-slant helices in Minkowski space $\operatorname{E}_1^4$
JO - Archivum Mathematicum
PY - 2010
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 046
IS - 1
SP - 39
EP - 46
AB - We consider a unit speed timelike curve $\alpha $ in Minkowski 4-space ${\mathbf {E}}_1^4$ and denote the Frenet frame of $\alpha $ by $\lbrace {\mathbf {T}}, {\mathbf {N}}, {\mathbf {B}}_1, {\mathbf {B}}_2\rbrace $. We say that $\alpha $ is a generalized helix if one of the unit vector fields of the Frenet frame has constant scalar product with a fixed direction $U$ of ${\mathbf {E}}_1^4$. In this work we study those helices where the function $\langle {\mathbf {B}}_2,U\rangle $ is constant and we give different characterizations of such curves.
LA - eng
KW - Minkowski space; timelike curve; Frenet equations; slant helix; Minkowski space; timelike curve; Frenet equations; slant helix
UR - http://eudml.org/doc/37652
ER -
References
top- Barros, M., 10.1090/S0002-9939-97-03692-7, Proc. Amer. Math. Soc. 125 (1997), 1503–1509. (1997) Zbl0876.53035MR1363411DOI10.1090/S0002-9939-97-03692-7
- Erdoǧan, M., Yilmaz, G., Null generalized and slant helices in 4-dimensional Lorentz-Minkowski space, Int. J. Contemp. Math. Sci. 3 (2008), 1113–1120. (2008) Zbl1160.53331MR2477940
- Ferrandez, A., Gimenez, A., Luca, P., 10.1142/S0217751X01005821, Int. J. Mod. Phys. A 16 (2001), 4845–4863. (2001) MR1873162DOI10.1142/S0217751X01005821
- Gluck, H., 10.2307/2313974, Amer. Math. Monthly 73 (1996), 699–704. (1996) MR0198355DOI10.2307/2313974
- Izumiya, S., Takeuchi, N., New special curves and developable surfaces, Turkish J. Math. 28 (2004), 531–537. (2004) Zbl1081.53003MR2062560
- Kocayiǧit, H., Önder, M., Timelike curves of constant slope in Minkowski space , J. Science Techn. Beykent Univ. 1 (2007), 311–318. (2007)
- Kula, L., Yayli, Y., 10.1016/j.amc.2004.09.078, Appl. Math. Comput. 169 (2005), 600–607. (2005) Zbl1083.53006MR2171171DOI10.1016/j.amc.2004.09.078
- Millman, R. S., Parker, G. D., Elements of differential geometry, Prentice-Hall Inc., Englewood Cliffs, N. J., 1977. (1977) Zbl0425.53001MR0442832
- Önder, M., Kazaz, M., Kocayiǧit, H., Kilic, O., -slant helix in Euclidean 4-space , Int. J. Contemp. Math. Sci. 3 (29) (2008), 1433–1440. (2008) Zbl1175.14019MR2514022
- O’Neill, B., Semi-Riemannian geometry. With applications to relativity. Pure and Applied Mathematics, vol. 103, Academic Press, Inc., New York, 1983. (1983) MR0719023
- Petrovic-Torgasev, M., Sucurovic, E., W-curves in Minkowski spacetime, Novi Sad J. Math. 32 (2002), 55–65. (2002) MR1949817
- Scofield, P. D., 10.2307/2974768, Amer. Math. Monthly 102 (1995), 531–537. (1995) Zbl0881.53002MR1336639DOI10.2307/2974768
- Synge, J. L., Timelike helices in flat space-time, Proc. Roy. Irish Acad. Sect. A 65 (1967), 27–42. (1967) Zbl0152.45901MR0208976
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.