Semiparametric estimation of the parameters of multivariate copulas

Eckhard Liebscher

Kybernetika (2009)

  • Volume: 45, Issue: 6, page 972-991
  • ISSN: 0023-5954

Abstract

top
In the paper we investigate properties of maximum pseudo-likelihood estimators for the copula density and minimum distance estimators for the copula. We derive statements on the consistency and the asymptotic normality of the estimators for the parameters.

How to cite

top

Liebscher, Eckhard. "Semiparametric estimation of the parameters of multivariate copulas." Kybernetika 45.6 (2009): 972-991. <http://eudml.org/doc/37680>.

@article{Liebscher2009,
abstract = {In the paper we investigate properties of maximum pseudo-likelihood estimators for the copula density and minimum distance estimators for the copula. We derive statements on the consistency and the asymptotic normality of the estimators for the parameters.},
author = {Liebscher, Eckhard},
journal = {Kybernetika},
keywords = {multivariate density estimation; copula; maximum likelihood estimators; minimum distance estimators; copula; multivariate density estimation; maximum likelihood estimators; minimum distance estimators},
language = {eng},
number = {6},
pages = {972-991},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Semiparametric estimation of the parameters of multivariate copulas},
url = {http://eudml.org/doc/37680},
volume = {45},
year = {2009},
}

TY - JOUR
AU - Liebscher, Eckhard
TI - Semiparametric estimation of the parameters of multivariate copulas
JO - Kybernetika
PY - 2009
PB - Institute of Information Theory and Automation AS CR
VL - 45
IS - 6
SP - 972
EP - 991
AB - In the paper we investigate properties of maximum pseudo-likelihood estimators for the copula density and minimum distance estimators for the copula. We derive statements on the consistency and the asymptotic normality of the estimators for the parameters.
LA - eng
KW - multivariate density estimation; copula; maximum likelihood estimators; minimum distance estimators; copula; multivariate density estimation; maximum likelihood estimators; minimum distance estimators
UR - http://eudml.org/doc/37680
ER -

References

top
  1. Pseudo-likelihood ratio tests for semiparametric multivariate copula model selection, Canad. J. Statist. 33 (2005), 389–414. MR2193982
  2. Estimation of copula-based semiparametric time series models, J. Econometrics 130 (2006), 307–335. MR2211797
  3. Efficient estimation of semiparametric multivariate copula models, J. Amer. Statist. Assoc. 101 (2006), 1228–1240. MR2328309
  4. Goodness-of-fit tests for copulas, J. Multivariate Anal. 95 (2005), 119–152. Zbl1095.62052MR2164126
  5. A semiparametric estimation procedure of dependence parameters in multivariate families of distributions, Biometrika 82 (1995), 543–552. MR1366280
  6. Goodness-of-fit procedures for copula models based on the probability integral transformation, Scand. J. Statist. 33 (2006), 337–366. MR2279646
  7. Statistical inference procedures for bivariate Archimedian copulas, J. Amer. Statist. Assoc. 88 (1993), 1034–1043. MR1242947
  8. Conditions for the asymptotic efficiency of an omnibus estimator of dependence estimators in copula models, In: Distributions with Given Marginals and Statistical Modelling (C. M. Cuadras et al., eds.), Kluwer, Dordrecht 2000, pp. 103–112. MR2058984
  9. Estimating the density of a copula function, Comm. Statist. – Theory Methods 19 (1990), 445–464. MR1067582
  10. Estimating a bivariate density when there are extra data on one or both components, Working Paper, 2006. 
  11. Epi-convergence of sequences of normal integrands and strong consistency of the maximum likelihood estimator, Ann. Statist. 24 (1996), 1298–1315. Zbl0862.62029MR1401851
  12. Multivariate Models and Dependence Concepts, Chapman and Hall, London 1997. Zbl0990.62517MR1462613
  13. Asymptotic efficiency of the two-stage estimation method for copula-based models, J. Multivariate Anal. 94 (2005), 401–419. Zbl1066.62061MR2167922
  14. Strong convergence of estimators as ε n -minimisers of optimisation problems, Ann. Inst. Statist. Math. 57 (2005), 291–313. MR2160652
  15. Semiparametric density estimators using copulas, Comm. Statist. – Theory Methods 34 (2005), 59–71. Zbl1066.62046MR2162520
  16. Construction of asymmetric multivariate copulas, J. Multivariate Anal. 99 (2008), 2234–2250. Zbl1151.62043MR2463386
  17. An Introduction to Copulas, (Lecture Notes in Statistics 139.) Springer, New York 1999. Zbl1152.62030MR1653203
  18. Multivariate Survival distributions, J. Nonparametric Statist. 3 (1994), 343–354. MR1291555
  19. Approximation Theorems of Mathematical Statistics, Wiley, New York 1980. Zbl1001.62005MR0595165
  20. Inferences on the association parameter in copula models for bivariate survival data, Biometrics 55 (1995), 1384–1399. MR1381050
  21. Kullback–Leibler information consistent estimation for censored data, Ann. Inst. Statist. Math. 53 (2001), 262–276. MR1841135
  22. Semiparametric estimation in copula models, Canad. J. Statist. 33 (2005), 357–375. Zbl1077.62022MR2193980
  23. Model selection and semiparametric inference for bivariate failure-time data, J. Amer. Statist. Assoc. 95 (2000), 62–76. MR1803141

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.