Further development of Chebyshev type inequalities for Sugeno integrals and T-(S-)evaluators

Hamzeh Agahi; Radko Mesiar; Yao Ouyang

Kybernetika (2010)

  • Volume: 46, Issue: 1, page 83-95
  • ISSN: 0023-5954

Abstract

top
In this paper further development of Chebyshev type inequalities for Sugeno integrals based on an aggregation function H and a scale transformation ϕ is given. Consequences for T-(S-)evaluators are established.

How to cite

top

Agahi, Hamzeh, Mesiar, Radko, and Ouyang, Yao. "Further development of Chebyshev type inequalities for Sugeno integrals and T-(S-)evaluators." Kybernetika 46.1 (2010): 83-95. <http://eudml.org/doc/37711>.

@article{Agahi2010,
abstract = {In this paper further development of Chebyshev type inequalities for Sugeno integrals based on an aggregation function $H$ and a scale transformation $\varphi $ is given. Consequences for T-(S-)evaluators are established.},
author = {Agahi, Hamzeh, Mesiar, Radko, Ouyang, Yao},
journal = {Kybernetika},
keywords = {Sugeno integral; fuzzy measure; comonotone functions; Chebyshev's inequality; t-norm; t-conorm; T-(S-)evaluators; fuzzy measure; Sugeno integral; comonotone functions; Chebyshev's inequality; t-norm; t-conorm; T-(S-)evaluators},
language = {eng},
number = {1},
pages = {83-95},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Further development of Chebyshev type inequalities for Sugeno integrals and T-(S-)evaluators},
url = {http://eudml.org/doc/37711},
volume = {46},
year = {2010},
}

TY - JOUR
AU - Agahi, Hamzeh
AU - Mesiar, Radko
AU - Ouyang, Yao
TI - Further development of Chebyshev type inequalities for Sugeno integrals and T-(S-)evaluators
JO - Kybernetika
PY - 2010
PB - Institute of Information Theory and Automation AS CR
VL - 46
IS - 1
SP - 83
EP - 95
AB - In this paper further development of Chebyshev type inequalities for Sugeno integrals based on an aggregation function $H$ and a scale transformation $\varphi $ is given. Consequences for T-(S-)evaluators are established.
LA - eng
KW - Sugeno integral; fuzzy measure; comonotone functions; Chebyshev's inequality; t-norm; t-conorm; T-(S-)evaluators; fuzzy measure; Sugeno integral; comonotone functions; Chebyshev's inequality; t-norm; t-conorm; T-(S-)evaluators
UR - http://eudml.org/doc/37711
ER -

References

top
  1. A Minkowski type inequality for fuzzy integrals, J. Uncertain Systems, in press. 
  2. General Minkowski type inequalities for Sugeno integrals, Fuzzy Sets and Systems 161 (2010), 708-715. MR2578627
  3. New general extensions of Chebyshev type inequalities for Sugeno integrals, International Journal of Approximate Reasoning 51 (2009), 135-140. MR2565211
  4. Monotone set functions-based integrals, In: Handbook of Measure Theory (E. Pap, ed.), Vol II, Elsevier, 2002, pp. 1329–1379. MR1954643
  5. T-evaluators and S-evaluators, Fuzzy Sets and Systems 160 (2009), 1965–1983. MR2555004
  6. A Chebyshev type inequality for fuzzy integrals, Appl. Math. Comput. 190 (2007), 1178–1184. MR2339711
  7. Aggregation Functions, Cambridge University Press, Cambridge, 2009. MR2538324
  8. Measure-based aggregation operators, Fuzzy Sets and Systems 142 (2004), 3–14. MR2045339
  9. Triangular Norms, Trends in Logic, (Studia Logica Library, Vol. 8.) Kluwer Academic Publishers, Dodrecht 2000. MR1790096
  10. Fuzzy integrals and linearity, Internat. J. Approx. Reason. 47 (2008), 352–358. MR2410433
  11. General Chebyshev type inequalities for Sugeno integrals, Fuzzy Sets and Systems 160 (2009), 58–64. MR2469431
  12. Sugeno integral of monotone functions based on Lebesgue measure, Comput. Math. Appl. 56 (2008), 367–374. MR2442659
  13. Fuzzy Chebyshev type inequality, Internat. J. Approx. Reason. 48 (2008), 829–835. MR2437953
  14. An inequality related to Minkowski type for Sugeno integrals, Information Sciences, in press. 
  15. On the Chebyshev type inequality for seminormed fuzzy integral, Appl. Math. Lett. 22 (2009), 1810–1815. MR2558545
  16. Sugeno integral and the comonotone commuting property, Internat. J. Uncertainty, Fuzziness and Knowledge-Based Systems 17 (2009), 465–480. MR2591398
  17. On the comonotonic- -property for Sugeno integral, Appl. Math. Comput. 211 (2009), 450–458. MR2526043
  18. Null-additive Set Functions, Kluwer Academic Publishers, Dordrecht 1995. Zbl1003.28012MR1368630
  19. The fuzzy integral, J. Math. Anal. Appl. 75 (1980), 562-570. MR0581840
  20. H-continuity of fuzzy measures and set defuzzifincation, Fuzzy Sets and Systems 157(2006), 230–242. MR2186225
  21. Sugeno integral and geometric inequalities, Internat. J. Uncertainty, Fuzziness and Knowledge-Based Systems 15 (2007), 1–11. MR2298130
  22. The fuzzy integral for monotone functions, Appl. Math. Comput. 185 (2007), 492–498. MR2297820
  23. A Jensen type inequality for fuzzy integrals, Inform. Scie. 177 (2007), 3192–3201. MR2340853
  24. Extremal fuzzy integrals, Soft Computing 10 (2006), 502–505. Zbl1097.28013
  25. Theory of Fuzzy Integrals and its Applications, Ph.D. Thesis. Tokyo Institute of Technology, 1974. 
  26. Fuzzy Measure Theory, Plenum Press, New York 1992. MR1212086

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.