Enveloping algebras of Malcev algebras

Murray R. Bremner; Irvin R. Hentzel; Luiz A. Peresi; Marina V. Tvalavadze; Hamid Usefi

Commentationes Mathematicae Universitatis Carolinae (2010)

  • Volume: 51, Issue: 2, page 157-174
  • ISSN: 0010-2628

Abstract

top
We first discuss the construction by Pérez-Izquierdo and Shestakov of universal nonassociative enveloping algebras of Malcev algebras. We then describe recent results on explicit structure constants for the universal enveloping algebras (both nonassociative and alternative) of the 4-dimensional solvable Malcev algebra and the 5-dimensional nilpotent Malcev algebra. We include a proof (due to Shestakov) that the universal alternative enveloping algebra of the real 7-dimensional simple Malcev algebra is isomorphic to the 8-dimensional division algebra of real octonions. We conclude with some brief remarks on tangent algebras of analytic Bol loops and monoassociative loops.

How to cite

top

Bremner, Murray R., et al. "Enveloping algebras of Malcev algebras." Commentationes Mathematicae Universitatis Carolinae 51.2 (2010): 157-174. <http://eudml.org/doc/37749>.

@article{Bremner2010,
abstract = {We first discuss the construction by Pérez-Izquierdo and Shestakov of universal nonassociative enveloping algebras of Malcev algebras. We then describe recent results on explicit structure constants for the universal enveloping algebras (both nonassociative and alternative) of the 4-dimensional solvable Malcev algebra and the 5-dimensional nilpotent Malcev algebra. We include a proof (due to Shestakov) that the universal alternative enveloping algebra of the real 7-dimensional simple Malcev algebra is isomorphic to the 8-dimensional division algebra of real octonions. We conclude with some brief remarks on tangent algebras of analytic Bol loops and monoassociative loops.},
author = {Bremner, Murray R., Hentzel, Irvin R., Peresi, Luiz A., Tvalavadze, Marina V., Usefi, Hamid},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Malcev algebras; universal enveloping algebras; universal alternative envelopes; differential operators; Bol algebras; analytic loops; Mal'tsev algebra; universal enveloping algebra; universal alternative envelope; differential operator; Bol algebra; analytic loop},
language = {eng},
number = {2},
pages = {157-174},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Enveloping algebras of Malcev algebras},
url = {http://eudml.org/doc/37749},
volume = {51},
year = {2010},
}

TY - JOUR
AU - Bremner, Murray R.
AU - Hentzel, Irvin R.
AU - Peresi, Luiz A.
AU - Tvalavadze, Marina V.
AU - Usefi, Hamid
TI - Enveloping algebras of Malcev algebras
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2010
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 51
IS - 2
SP - 157
EP - 174
AB - We first discuss the construction by Pérez-Izquierdo and Shestakov of universal nonassociative enveloping algebras of Malcev algebras. We then describe recent results on explicit structure constants for the universal enveloping algebras (both nonassociative and alternative) of the 4-dimensional solvable Malcev algebra and the 5-dimensional nilpotent Malcev algebra. We include a proof (due to Shestakov) that the universal alternative enveloping algebra of the real 7-dimensional simple Malcev algebra is isomorphic to the 8-dimensional division algebra of real octonions. We conclude with some brief remarks on tangent algebras of analytic Bol loops and monoassociative loops.
LA - eng
KW - Malcev algebras; universal enveloping algebras; universal alternative envelopes; differential operators; Bol algebras; analytic loops; Mal'tsev algebra; universal enveloping algebra; universal alternative envelope; differential operator; Bol algebra; analytic loop
UR - http://eudml.org/doc/37749
ER -

References

top
  1. Akivis M.A., Goldberg V.V., 10.1090/S0273-0979-06-01094-9, Bull. Amer. Math. Soc. 43 (2006), 207–226. MR2216110DOI10.1090/S0273-0979-06-01094-9
  2. Akivis M.A., Shelekhov A.M., Fourth-order alternators of a local analytic loop and three-webs of multidimensional surfaces, Soviet Math. 33 (1989), 13–18. MR1008142
  3. Bremner M.R., Hentzel I.R., Peresi L.A., Usefi H., 10.1090/conm/483/09436, Contemp. Math. 483 (2009), 73–89. MR2497952DOI10.1090/conm/483/09436
  4. Bremner M.R., Usefi H., Enveloping algebras of the nilpotent Malcev algebra of dimension five, Algebr. Represent. Theory(to appear). MR2660854
  5. Carlsson R., Malcev-Moduln, J. Reine Angew. Math. 281 (1976), 199–210. Zbl0326.17010MR0393158
  6. Elduque A., 10.1016/0021-8693(86)90181-X, J. Algebra 103 (1986), 216–227. Zbl0592.17014MR0860701DOI10.1016/0021-8693(86)90181-X
  7. Elduque A., Shestakov I.P., 10.1006/jabr.1995.1106, J. Algebra 173 (1995), 622–637. Zbl0824.17005MR1327872DOI10.1006/jabr.1995.1106
  8. Gavrilov A.V., Malcev extensions, Southeast Asian Bull. Math.(to appear). MR2657651
  9. Kuzmin E.N., Malcev algebras and their representations, Algebra Logika 7 (1968), 48–69. MR0252468
  10. Kuzmin E.N., Malcev algebras of dimension five over a field of characteristic zero, Algebra Logika 9 (1971), 691–700. MR0283033
  11. Kuzmin E.N., Shestakov I.P., Nonassociative structures, pages 197–280 of Algebra VI, Encyclopaedia of Mathematical Sciences 57, Springer, Berlin, 1995. MR1360006
  12. Malcev A.I., Analytic loops, Mat. Sbornik N.S. 36/78 (1955), 569–576. MR0069190
  13. Mikheev P.O., 10.1007/BF01831136, Aequationes Math. 51 (1996), 1–11. Zbl0845.53011MR1372779DOI10.1007/BF01831136
  14. Mikheev P.O., Sabinin L.V., Infinitesimal theory of local analytic loops, Soviet Math. Dokl. 36 (1988), 545–548. Zbl0659.53018MR0924255
  15. Morandi P.J., Pérez-Izquierdo J.M., Pumplün S., 10.1006/jabr.2001.8773, J. Algebra 243 (2001), 41–68. MR1851653DOI10.1006/jabr.2001.8773
  16. Pérez-Izquierdo J.M., 10.1016/j.jalgebra.2004.09.038, J. Algebra 284 (2005), 480–493. MR2114566DOI10.1016/j.jalgebra.2004.09.038
  17. Pérez-Izquierdo J.M., 10.1016/j.aim.2006.04.001, Advances Math. 208 (2007), 834–876. MR2304338DOI10.1016/j.aim.2006.04.001
  18. Pérez-Izquierdo J.M., Shestakov I.P., 10.1016/S0021-8693(03)00389-2, J. Algebra 272 (2004), 379–393. MR2029038DOI10.1016/S0021-8693(03)00389-2
  19. Sagle A.A., 10.1090/S0002-9947-1961-0143791-X, Trans. Amer. Math. Soc. 101 (1961), 426–458. Zbl0136.02103MR0143791DOI10.1090/S0002-9947-1961-0143791-X
  20. Shelekhov A.M., 10.1007/BF01095908, J. Soviet Math. 55 (1991), 2140–2168. Zbl0705.53014DOI10.1007/BF01095908
  21. Shestakov I.P., Speciality problem for Malcev algebras and Poisson Malcev algebras, pages 365–371 of Nonassociative Algebra and its Applications, Dekker, New York, 2000. Zbl0971.17019MR1755366
  22. Shestakov I.P., Speciality and deformations of algebras, pages 345–356 of Algebra, de Gruyter, Berlin, 2000. Zbl1027.17001MR1754680
  23. Shestakov I.P., Umirbaev U.U., 10.1006/jabr.2001.9123, J. Algebra 250 (2002), 533–548. Zbl0993.17002MR1899864DOI10.1006/jabr.2001.9123
  24. Shestakov I.P., Zhelyabin V.N., The Chevalley and Kostant theorems for Malcev algebras, Algebra Logika 46 (2007), 560–584. MR2378631
  25. Zhevlakov K.A., Slinko A.M., Shestakov I.P., Shirshov A.I., Rings That Are Nearly Associative, Academic Press, New York, 1982. Zbl0487.17001MR0668355

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.