Quasigroup automorphisms and symmetric group characters
Brent Kerby; Jonathan D. H. Smith
Commentationes Mathematicae Universitatis Carolinae (2010)
- Volume: 51, Issue: 2, page 279-286
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topKerby, Brent, and Smith, Jonathan D. H.. "Quasigroup automorphisms and symmetric group characters." Commentationes Mathematicae Universitatis Carolinae 51.2 (2010): 279-286. <http://eudml.org/doc/37760>.
@article{Kerby2010,
abstract = {The automorphisms of a quasigroup or Latin square are permutations of the set of entries of the square, and thus belong to conjugacy classes in symmetric groups. These conjugacy classes may be recognized as being annihilated by symmetric group class functions that belong to a $\lambda $-ideal of the special $\lambda $-ring of symmetric group class functions.},
author = {Kerby, Brent, Smith, Jonathan D. H.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Latin square; quasigroup; automorphism; $\lambda $-ring; quasigroups; automorphisms; -rings; class functions},
language = {eng},
number = {2},
pages = {279-286},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Quasigroup automorphisms and symmetric group characters},
url = {http://eudml.org/doc/37760},
volume = {51},
year = {2010},
}
TY - JOUR
AU - Kerby, Brent
AU - Smith, Jonathan D. H.
TI - Quasigroup automorphisms and symmetric group characters
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2010
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 51
IS - 2
SP - 279
EP - 286
AB - The automorphisms of a quasigroup or Latin square are permutations of the set of entries of the square, and thus belong to conjugacy classes in symmetric groups. These conjugacy classes may be recognized as being annihilated by symmetric group class functions that belong to a $\lambda $-ideal of the special $\lambda $-ring of symmetric group class functions.
LA - eng
KW - Latin square; quasigroup; automorphism; $\lambda $-ring; quasigroups; automorphisms; -rings; class functions
UR - http://eudml.org/doc/37760
ER -
References
top- Atiyah M.F., Tall D.O., 10.1016/0040-9383(69)90015-9, Topology 8 (1969), 253–297. Zbl0159.53301MR0244387DOI10.1016/0040-9383(69)90015-9
- Bryant D., Buchanan M., Wanless I.M., 10.1016/j.disc.2008.01.020, Discrete Math. 309 (2009), 821–833. MR2502191DOI10.1016/j.disc.2008.01.020
- tom Dieck T., Transformation Groups and Representation Theory, Springer, Berlin, 1979. Zbl0529.57020MR0551743
- Falcón R.M., Cycle structures of autotopisms of the Latin squares of order up to , arXiv:0709.2973v2 [math.CO], 2009; to appear in Ars Combinatoria.
- Falcón R.M., Martín-Morales J., 10.1016/j.jsc.2007.07.004, J. Symbolic Comput. 42 (2007), 1142–1154. MR2368076DOI10.1016/j.jsc.2007.07.004
- Knutson D., -rings and the Representation Theory of the Symmetric Group, Springer, Berlin, 1973. Zbl0272.20008MR0364425
- McKay B.D., Meynert A., Myrvold W., 10.1002/jcd.20105, J. Combin. Designs 15 (2007), 98–119. Zbl1112.05018MR2291523DOI10.1002/jcd.20105
- Smith J.D.H., An Introduction to Quasigroups and Their Representations, Chapman and Hall/CRC, Boca Raton, FL, 2007. Zbl1122.20035MR2268350
- Smith J.D.H., Romanowska A.B., Post-Modern Algebra, Wiley, New York, NY, 1999. Zbl0946.00001MR1673047
- Wanless I.M., 10.1016/j.ejc.2003.09.014, European J. Combin. 25 (2004), 393–413. Zbl1047.05007MR2036476DOI10.1016/j.ejc.2003.09.014
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.