On the structure of finite loop capable nilpotent groups
Commentationes Mathematicae Universitatis Carolinae (2010)
- Volume: 51, Issue: 2, page 349-355
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topRytty, Miikka. "On the structure of finite loop capable nilpotent groups." Commentationes Mathematicae Universitatis Carolinae 51.2 (2010): 349-355. <http://eudml.org/doc/37765>.
@article{Rytty2010,
abstract = {In this paper we consider finite loops and discuss the problem which nilpotent groups are isomorphic to the inner mapping group of a loop. We recall some earlier results and by using connected transversals we transform the problem into a group theoretical one. We will get some new answers as we show that a nilpotent group having either $C_\{p^k\} \times C_\{p^l\}$, $k > l \ge 0$ as the Sylow $p$-subgroup for some odd prime $p$ or the group of quaternions as the Sylow $2$-subgroup may not be loop capable.},
author = {Rytty, Miikka},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {loop; group; connected transversals; finite loops; finite nilpotent groups; inner mapping groups; inner automorphism groups; connected transversals},
language = {eng},
number = {2},
pages = {349-355},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On the structure of finite loop capable nilpotent groups},
url = {http://eudml.org/doc/37765},
volume = {51},
year = {2010},
}
TY - JOUR
AU - Rytty, Miikka
TI - On the structure of finite loop capable nilpotent groups
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2010
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 51
IS - 2
SP - 349
EP - 355
AB - In this paper we consider finite loops and discuss the problem which nilpotent groups are isomorphic to the inner mapping group of a loop. We recall some earlier results and by using connected transversals we transform the problem into a group theoretical one. We will get some new answers as we show that a nilpotent group having either $C_{p^k} \times C_{p^l}$, $k > l \ge 0$ as the Sylow $p$-subgroup for some odd prime $p$ or the group of quaternions as the Sylow $2$-subgroup may not be loop capable.
LA - eng
KW - loop; group; connected transversals; finite loops; finite nilpotent groups; inner mapping groups; inner automorphism groups; connected transversals
UR - http://eudml.org/doc/37765
ER -
References
top- Baer R., 10.1007/BF01170643, Math. Z. 38 (1934), 375–416. Zbl0009.01101MR1545456DOI10.1007/BF01170643
- Bruck R., 10.1090/S0002-9947-1946-0017288-3, Trans. Amer. Math. Soc. 60 (1946), 245–354. Zbl0061.02201MR0017288DOI10.1090/S0002-9947-1946-0017288-3
- Csörgö P., 10.1007/s00013-006-1379-5, Arch. Math. 86 (2006), 499–516. MR2241599DOI10.1007/s00013-006-1379-5
- Doerk K., Hawkes T., Finite Soluble Groups, de Gruyter, Berlin, 1992. Zbl0753.20001MR1169099
- Drápal A., 10.1007/s605-002-8256-2, Monatsh. Math. 134 (2002), 191–206. MR1883500DOI10.1007/s605-002-8256-2
- Huppert B., Endliche Gruppen I, Springer, Berlin-Heidelberg-New York, 1967. Zbl0412.20002MR0224703
- Kepka T., Niemenmaa M., 10.1016/0021-8693(90)90152-E, J. Algebra 135 (1990), 112–122. Zbl0706.20046MR1076080DOI10.1016/0021-8693(90)90152-E
- Kepka T., Niemenmaa M., 10.1007/BF01198806, Arch. Math. 60 (1993), 233–236. MR1201636DOI10.1007/BF01198806
- Mazur M., 10.1515/JGT.2007.015, J. Group Theory 10 (2007), 195–203. Zbl1150.20010MR2302614DOI10.1515/JGT.2007.015
- Niemenmaa M., 10.1017/S0004972700038491, Bull. Austral. Math. Soc. 71 (2005), 487–492. Zbl1080.20061MR2150938DOI10.1017/S0004972700038491
- Niemenmaa M., On the structure of finite loop capable Abelian groups, Comment. Math. Univ. Carolin. 48,2 (2007), 217–224. Zbl1174.20345MR2338090
- Niemenmaa M., 10.1017/S0004972708001093, Bull. Aust. Math. Soc. 79 (2009), 109–114. Zbl1167.20039MR2486887DOI10.1017/S0004972708001093
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.